Properties of Biochar Derived from Tea Waste as an Alternative Fuel and Its Effect on Phytotoxicity of Seed Germination for Soil Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Proximate and Ultimate Analysis
2.2. Stoichiometric Analysis
2.3. Phytotoxicity Test
2.4. Preparation of the Extract
2.4.1. Determination of the Total Phenolic Content
2.4.2. Determination of the Total Flavonoid Content
2.4.3. Determination of the Total Antioxidant Activity
2.5. Statistical Analysis
3. Results and Discussion
3.1. Proximate and Ultimate Analysis
3.2. Stoichiometric Analysis
3.3. Phytotoxicity Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Environment Agency. Closing the Loop—An EU Action Plan for the Circular Economy COM/2015/0614 Final. Available online: https://www.eea.europa.eu/policy-documents/com-2015-0614-final (accessed on 28 August 2022).
- Malaták, J.; Jevic, P.; Gürdil, G.A.K.; Selvi, K.Ç. Biomass Heat-Emission Characteristics of Energy Plants. AMA Agric. Mech. Asia Afr. Lat. Am. 2008, 39, 9–13. [Google Scholar]
- Malaták, J.; Velebil, J.; Bradna, J.; Gendek, A.; Tamelová, B. Evaluation of Co and NoxEmissions in Real-Life Operating Conditions of Herbaceous Biomass Briquettes Combustion. Acta Technol. Agric. 2020, 23, 53–59. [Google Scholar] [CrossRef]
- Sutton, D.; Kelleher, B.; Ross, J.R.H. Review of Literature on Catalysts for Biomass Gasification. Fuel Process. Technol. 2001, 73, 155–173. [Google Scholar] [CrossRef]
- Akhtar, A.; Krepl, V.; Ivanova, T. A Combined Overview of Combustion, Pyrolysis, and Gasification of Biomass. Energy Fuels 2018, 32, 7294–7318. [Google Scholar] [CrossRef]
- Bożym, M.; Gendek, A.; Siemiątkowski, G.; Aniszewska, M.; Malaťák, J. Assessment of the Composition of Forest Waste in Terms of Its Further Use. Materials 2021, 14, 973. [Google Scholar] [CrossRef]
- Tamelová, B.; Malaťák, J.; Velebil, J. Energy Valorisation of Citrus Peel Waste by Torrefaction Treatment. Agron. Res. 2018, 16, 276–285. [Google Scholar] [CrossRef]
- Tamelová, B.; Malaťák, J.; Velebil, J.; Gendek, A.; Aniszewska, M. Energy Utilization of Torrefied Residue from Wine Production. Materials 2021, 14, 1610. [Google Scholar] [CrossRef]
- Vivek, V. Global Market Report: Tea | International Institute for Sustainable Development. Available online: https://www.iisd.org/publications/report/global-market-report-tea (accessed on 1 October 2022).
- Akbayrak, S.; Özçifçi, Z.; Tabak, A. Activated Carbon Derived from Tea Waste: A Promising Supporting Material for Metal Nanoparticles Used as Catalysts in Hydrolysis of Ammonia Borane. Biomass Bioenergy 2020, 138, 105589. [Google Scholar] [CrossRef]
- Taşar, Ş. Thermal Conversion Behavior of Cellulose and Hemicellulose Fractions Isolated from Tea Leaf Brewing Waste: Kinetic and Thermodynamic Evaluation. Biomass Convers. Biorefin. 2022, 12, 2935–2947. [Google Scholar] [CrossRef]
- Sheikhzadeh, N.; Nofouzi, K.; Delazar, A.; Oushani, A.K. Immunomodulatory Effects of Decaffeinated Green Tea (Camellia Sinensis) on the Immune System of Rainbow Trout (Oncorhynchus Mykiss). Fish Shellfish Immunol. 2011, 31, 1268–1269. [Google Scholar] [CrossRef]
- Debnath, B.; Haldar, D.; Purkait, M.K. Potential and Sustainable Utilization of Tea Waste: A Review on Present Status and Future Trends. J. Environ. Chem. Eng. 2021, 9, 106179. [Google Scholar] [CrossRef]
- Nag Chaudhuri, A.K.; Karmakar, S.; Roy, D.; Pal, S.; Pal, M.; Sen, T. Anti-Inflammatory Activity of Indian Black Tea (Sikkim Variety). Pharmacol. Res. 2005, 51, 169–175. [Google Scholar] [CrossRef]
- Krasucka, P.; Pan, B.; Sik Ok, Y.; Mohan, D.; Sarkar, B.; Oleszczuk, P. Engineered Biochar—A Sustainable Solution for the Removal of Antibiotics from Water. Chem. Eng. J. 2021, 405, 126926. [Google Scholar] [CrossRef]
- Ahsan, M.A.; Katla, S.K.; Islam, M.T.; Hernandez-Viezcas, J.A.; Martinez, L.M.; Díaz-Moreno, C.A.; Lopez, J.; Singamaneni, S.R.; Banuelos, J.; Gardea-Torresdey, J.; et al. Adsorptive Removal of Methylene Blue, Tetracycline and Cr(VI) from Water Using Sulfonated Tea Waste. Environ. Technol. Innov. 2018, 11, 23–40. [Google Scholar] [CrossRef]
- Khalil, U.; Bilal Shakoor, M.; Ali, S.; Rizwan, M.; Nasser Alyemeni, M.; Wijaya, L. Adsorption-Reduction Performance of Tea Waste and Rice Husk Biochars for Cr(VI) Elimination from Wastewater. J. Saudi Chem. Soc. 2020, 24, 799–810. [Google Scholar] [CrossRef]
- Shakoor, M.B.; Bibi, I.; Niazi, N.K.; Shahid, M.; Nawaz, M.F.; Farooqi, A.; Naidu, R.; Rahman, M.M.; Murtaza, G.; Lüttge, A. The Evaluation of Arsenic Contamination Potential, Speciation and Hydrogeochemical Behaviour in Aquifers of Punjab, Pakistan. Chemosphere 2018, 199, 737–746. [Google Scholar] [CrossRef]
- Aksay, M.V.; Ozkaymak, M.; Calhan, R. Co-Digestion of Cattle Manure and Tea Waste for Biogas Production. Int. J. Renew. Energy Res. 2018, 8, 1346–1353. [Google Scholar] [CrossRef]
- Manyuchi, M.M.; Mbohwa, C.; Muzenda, E. Biogas and Bio Solids Production from Tea Waste through Anaerobic Digestion. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Paris, France, 26–27 July 2018; Volume 2018, pp. 2519–2525. [Google Scholar]
- Ayas, N.; Esen, T. Hydrogen Production from Tea Waste. Int. J. Hydrog. Energy 2016, 41, 8067–8072. [Google Scholar] [CrossRef]
- Özarslan, S.; Abut, S.; Atelge, M.R.; Kaya, M.; Unalan, S. Modeling and Simulation of Co-Digestion Performance with Artificial Neural Network for Prediction of Methane Production from Tea Factory Waste with Co-Substrate of Spent Tea Waste. Fuel 2021, 306. [Google Scholar] [CrossRef]
- Çaǧlar, A.; Demirbaş, A. Hydrogen-Rich Gaseous Products from Tea Waste by Pyrolysis. Energy Sources 2001, 23, 739–746. [Google Scholar] [CrossRef]
- Mizuno, S.; Ida, T.; Fuchihata, M.; Namba, K. Effect of Specimen Size on Ultimate Compressive Strength of Bio-Coke Produced from Green Tea Grounds. Mech. Eng. J. 2016, 3, 15–00441. [Google Scholar] [CrossRef]
- Pua, F.L.; Subari, M.S.; Ean, L.W.; Krishnan, S.G. Characterization of Biomass Fuel Pellets Made from Malaysia Tea Waste and Oil Palm Empty Fruit Bunch. Mater. Today Proc. 2020, 31, 187–190. [Google Scholar] [CrossRef]
- Intagun, W.; Kanoksilapatham, W.; Maden, A.; Nobaew, B. Effect of Natural Additive on Pellets Physical Properties and Energy Cost. In Proceedings of the 2019 IEEE 2nd International Conference on Renewable Energy and Power Engineering, REPE 2019, Toronto, ON, Canada, 2–4 November 2019; pp. 130–134. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Y. Physical Properties of Solid Fuel Briquettes Made from Caragana Korshinskii Kom. Powder Technol. 2014, 256, 293–299. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, C.C.; Lei, H.; Wang, H.L.; Ning, T.T.; Hao, W.; Hu, X.D. Effects of Addition of Various Ingredients during Pelletizing on Physical Characteristics of Green Tea Residue Pellets. Appl. Eng. Agric. 2014, 30, 49–53. [Google Scholar] [CrossRef]
- Cai, H.; Zou, H.; Liu, J.; Xie, W.; Kuo, J.; Buyukada, M.; Evrendilek, F. Thermal Degradations and Processes of Waste Tea and Tea Leaves via TG-FTIR: Combustion Performances, Kinetics, Thermodynamics, Products and Optimization. Bioresour. Technol. 2018, 268, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.; Benhouria, A.; Asif, M.; Hameed, B.H. Methylene Blue Adsorption on Factory-Rejected Tea Activated Carbon Prepared by Conjunction of Hydrothermal Carbonization and Sodium Hydroxide Activation Processes. J. Taiwan Inst. Chem. Eng. 2015, 52, 57–64. [Google Scholar] [CrossRef]
- Malaťák, J.; Dlabaja, T. Hydrothermal Carbonization of Kitchen Waste. Res. Agric. Eng. 2016, 62, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Azapagic, A.; Bore, J.; Cheserek, B.; Kamunya, S.; Elbehri, A. The Global Warming Potential of Production and Consumption of Kenyan Tea. J. Clean Prod. 2016, 112, 4031–4040. [Google Scholar] [CrossRef]
- Xu, Q.; Hu, K.; Wang, X.; Wang, D.; Knudsen, M.T. Carbon Footprint and Primary Energy Demand of Organic Tea in China Using a Life Cycle Assessment Approach. J. Clean Prod. 2019, 233, 782–792. [Google Scholar] [CrossRef]
- Cichorowski, G.; Joa, B.; Hottenroth, H.; Schmidt, M. Scenario Analysis of Life Cycle Greenhouse Gas Emissions of Darjeeling Tea. Int. J. Life Cycle Assess. 2015, 20, 426–439. [Google Scholar] [CrossRef]
- Liang, L.; Ridoutt, B.G.; Wang, L.; Xie, B.; Li, M.; Li, Z. China’s Tea Industry: Net Greenhouse Gas Emissions and Mitigation Potential. Agriculture 2021, 11, 363. [Google Scholar] [CrossRef]
- He, Y.; Yao, Y.; Ji, Y.; Deng, J.; Zhou, G.; Liu, R.; Shao, J.; Zhou, L.; Li, N.; Zhou, X.; et al. Biochar Amendment Boosts Photosynthesis and Biomass in C3 but Not C4 Plants: A Global Synthesis. GCB Bioenergy 2020, 12, 605–617. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Thavamani, P.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Agronomic and Remedial Benefits and Risks of Applying Biochar to Soil: Current Knowledge and Future Research Directions. Environ. Int. 2016, 87, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to Improve Soil Fertility. A Review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef] [Green Version]
- Dey, D.; Mavi, M.S. Co-Application of Biochar with Non-Pyrolyzed Organic Material Accelerates Carbon Accrual and Nutrient Availability in Soil. Environ. Technol. Innov. 2022, 25, 102128. [Google Scholar] [CrossRef]
- Malaťák, J.; Passian, L. Heat-Emission Analysis of Small Combustion Equipments for Biomass. Res. Agric. Eng. 2011, 57, 37–50. [Google Scholar] [CrossRef] [Green Version]
- ČSN ISO 1928 (441352); Uhlí a Koks—Stanovení Spalného Tepla. Czech Standardization Agency: Prague, Czech Republic. Available online: https://www.technicke-normy-csn.cz/csn-iso-1928-441352-205351.html (accessed on 26 August 2022).
- Jeníček, L.; Tunklová, B.; Malat’ák, J.; Neškudla, M.; Velebil, J. Use of Spent Coffee Ground as an Alternative Fuel and Possible Soil Amendment. Materials 2022, 15, 6722. [Google Scholar] [CrossRef]
- Silva, M.P.; Nieva Lobos, M.L.; Piloni, R.v.; Dusso, D.; González Quijón, M.E.; Scopel, A.L.; Moyano, E.L. Pyrolytic Biochars from Sunflower Seed Shells, Peanut Shells and Spirulina Algae: Their Potential as Soil Amendment and Natural Growth Regulators. SN Appl. Sci. 2020, 2, 1926. [Google Scholar] [CrossRef]
- State Institute for Drug Control. Czech Pharmacopoeai; Grada Publishing a.s.: Prague, Czech Republic, 2017. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. J. Food Drug Anal. 2020, 10, 3. [Google Scholar] [CrossRef]
- Subhasree, B.; Baskar, R.; Laxmi Keerthana, R.; Lijina Susan, R.; Rajasekaran, P. Evaluation of Antioxidant Potential in Selected Green Leafy Vegetables. Food Chem. 2009, 115, 1213–1220. [Google Scholar] [CrossRef]
- Sermyagina, E.; Mendoza Martinez, C.L.; Nikku, M.; Vakkilainen, E. Spent Coffee Grounds and Tea Leaf Residues: Characterization, Evaluation of Thermal Reactivity and Recovery of High-Value Compounds. Biomass Bioenergy 2021, 150, 106141. [Google Scholar] [CrossRef]
- Jenicek, L.; Neskudla, M.; Malatak, J.; Velebil, J.; Passian, L. Spruce and Barley Elemental and Stochiometric Analysis Affected by the Impact of Pellet Production and Torrefaction. Acta Technol. Agric. 2021, 24, 166–172. [Google Scholar] [CrossRef]
- Juszczak, M. Comparison of CO and NOx Concentrations from a 20 KW Boiler for Periodic and Constant Wood Pellet Supply. Environ. Prot. Eng. 2020, 42. [Google Scholar] [CrossRef]
- Tamelová, B.; Malaťák, J.; Velebil, J.; Gendek, A.; Aniszewska, M. Impact of Torrefaction on Fuel Properties of Aspiration Cleaning Residues. Materials 2022, 15, 6949. [Google Scholar] [CrossRef]
- Malaťák, J.; Velebil, J.; Malaťáková, J.; Passian, L.; Bradna, J.; Tamelová, B.; Gendek, A.; Aniszewska, M. Reducing Emissions from Combustion of Grape Residues in Mixtures with Herbaceous Biomass. Materials 2022, 15, 7288. [Google Scholar] [CrossRef]
- Chatterjee, P.; Chandra, S.; Dey, P.; Bhattacharya, S. Comparative Study of Allelopathic Effects of Green Tea and Black Tea. Curr. Trends Biotechnol. Pharm. 2013, 7, 644–649. [Google Scholar]
- Bizuayehu, D.; Atlabachew, M.; Ali, M.T. Determination of Some Selected Secondary Metabolites and Their Invitro Antioxidant Activity in Commercially Available Ethiopian Tea (Camellia Sinensis). Springerplus 2016, 5, 412. [Google Scholar] [CrossRef] [Green Version]
- Rezaeinodehi, A.; Khangholi, S.; Aminidehaghi, M. Allelopathic Potential of Tea (Camellia Sinensis (L.) Kuntze) on Germination and Growth of Amaranthus Retroflexus L. and Setaria Glauca (L.) P. Beauv. J. Plant Dis. Prot. New Ser. 2006, S20, 447–454. [Google Scholar]
- Borgohain, A.; Konwar, K.; Buragohain, D.; Varghese, S.; Kumar Dutta, A.; Paul, R.K.; Khare, P.; Karak, T. Temperature Effect on Biochar Produced from Tea (Camellia Sinensis L.) Pruning Litters: A Comprehensive Treatise on Physico-Chemical and Statistical Approaches. Bioresour. Technol. 2020, 318, 124023. [Google Scholar] [CrossRef]
- Bourguiba, H.; Scotti, I.; Sauvage, C.; Zhebentyayeva, T.; Ledbetter, C.; Krška, B.; Remay, A.; D’Onofrio, C.; Iketani, H.; Christen, D.; et al. Genetic Structure of a Worldwide Germplasm Collection of Prunus armeniaca L. Reveals Three Major Diffusion Routes for Varieties Coming from the Species’ Center of Origin. Front. Plant Sci. 2020, 11, 638. [Google Scholar] [CrossRef] [PubMed]
- Kopjar, M.; Tadić, M.; Piližota, V. Phenol Content and Antioxidant Activity of Green, Yellow and Black Tea Leaves. Chem. Biol. Technol. Agric. 2015, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Abdeltaif, S.A.; Sirelkhatim, K.A.; Hassan, A.B. Estimation of Phenolic and Flavonoid Compounds and Antioxidant Activity of Spent Coffee and Black Tea (Processing) Waste for Potential Recovery and Reuse in Sudan. Recycling 2018, 3, 27. [Google Scholar] [CrossRef]
- Rahman, M.; Jahan, I.A.; Ahmed, S.; Ahmed, K.S.; Roy, M.; Zzaman, W.; Ahmad, I. Bioactive Compounds and Antioxidant Activity of Black and Green Tea Available in Bangladesh. Food Res. 2021, 5, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Kodama, D.H.; Gonçalves, A.E.d.S.S.; Lajolo, F.M.; Genovese, M.I. Flavonoids, Total Phenolics and Antioxidant Capacity: Comparison between Commercial Green Tea Preparations. Food Sci. Technol. 2010, 30, 1077–1082. [Google Scholar] [CrossRef]
Tea Waste Sample | Description |
---|---|
TEA03 | Tea particle size 0–3 mm |
TEA36 | Tea particle size 3–6 mm |
TEA69 | Tea particle size 6–9 mm |
Tea Waste Sample | Particle Size | Final Temperature |
---|---|---|
TEA0 | Average of all | Non-torrefied |
TEA250 | Average of all | 250 °C |
TEA300 | Average of all | 300 °C |
TEA350 | Average of all | 350 °C |
TEA450 | Average of all | 450 °C |
TEA550 | Average of all | 550 °C |
Tea Waste Sample | Carbon (% wt.) | Hydrogen (% wt.) | Oxygen (% wt.) | Nitrogen (% wt.) | Sulfur (% wt.) | Ash (% wt.) | Moisture (% wt.) |
---|---|---|---|---|---|---|---|
TEA0 | 47.01 ± 0.28 b | 5.20 ± 0.06 a | 34.76 f | 1.79 ± 0.1 a | 0.08 ± 0.03 a | 4.11 ± 0.06 a | 7.06 ± 0.07 e |
TEA250 | 55.67 ± 0.32 c | 5.36 ± 0.07 a | 30.46 e | 2.34 ± 0.06 a | 0.10 ± 0.25 a | 5.31 ± 0.10 ab | 0.76 ± 0.23 b |
TEA300 | 64.40 ± 0.38 d | 4.83 ± 0.07 e | 19.25 d | 2.56 ± 0.02 a | 0.12 ± 0.23 a | 7.02 ± 0.06 bc | 1.81 ± 0.36 c |
TEA350 | 68.54 ± 0.38 e | 4.14 ± 0.07 d | 13.29 c | 2.55 ± 0.03 a | 0.12 ± 0.23 a | 8.77 ± 0.20 cd | 2.60 ± 0.42 a |
TEA450 | 72.92 ± 0.44 a | 3.01 ± 0.10 c | 7.57 b | 2.49 ± 0.08 a | 0.12 ± 0.28 a | 11.14 ± 0.17 de | 2.76 ± 0.79 a |
TEA550 | 73.68 ± 0.50 a | 2.04 ± 0.11 b | 3.91 a | 2.21 ± 0.04 a | 0.11 ± 0.35 a | 11.76 ± 0.12 e | 6.29 ± 0.92 d |
Tea Waste Sample | TPC (mg g−1) | TFC (mg g−1) | TAA (mg g−1) |
---|---|---|---|
TEA0 | 41.26 ± 0.88 d | 60.49 ± 2.61 d | 144.00 ± 12.88 d |
TEA250 | 11.37 ± 0.16 c | 16.50 ± 0.50 c | 42.61 ± 0.71 c |
TEA300 | 7.56 ± 0.10 b | 10.16 ± 0.21 b | 29.79 ± 0.57 bc |
TEA350 | 1.80 ± 0.03 a | 3.39 ± 0.04 a | 6.96 ± 0.12 ab |
TEA450 | 0.32 ± 0.1 a | 0.97 ± 0.02 a | 1.66 ± 0.05 a |
TEA550 | 0.21 ± 0.03 a | 0.50 ± 0.03 a | 0.82 ± 0.03 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tunklová, B.; Jeníček, L.; Malaťák, J.; Neškudla, M.; Velebil, J.; Hnilička, F. Properties of Biochar Derived from Tea Waste as an Alternative Fuel and Its Effect on Phytotoxicity of Seed Germination for Soil Applications. Materials 2022, 15, 8709. https://doi.org/10.3390/ma15248709
Tunklová B, Jeníček L, Malaťák J, Neškudla M, Velebil J, Hnilička F. Properties of Biochar Derived from Tea Waste as an Alternative Fuel and Its Effect on Phytotoxicity of Seed Germination for Soil Applications. Materials. 2022; 15(24):8709. https://doi.org/10.3390/ma15248709
Chicago/Turabian StyleTunklová, Barbora, Lukáš Jeníček, Jan Malaťák, Michal Neškudla, Jan Velebil, and František Hnilička. 2022. "Properties of Biochar Derived from Tea Waste as an Alternative Fuel and Its Effect on Phytotoxicity of Seed Germination for Soil Applications" Materials 15, no. 24: 8709. https://doi.org/10.3390/ma15248709
APA StyleTunklová, B., Jeníček, L., Malaťák, J., Neškudla, M., Velebil, J., & Hnilička, F. (2022). Properties of Biochar Derived from Tea Waste as an Alternative Fuel and Its Effect on Phytotoxicity of Seed Germination for Soil Applications. Materials, 15(24), 8709. https://doi.org/10.3390/ma15248709