The Effect of Ni2+ Ions Substitution on Structural, Morphological, and Optical Properties in CoCr2O4 Matrix as Pigments in Ceramic Glazes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Pigments
2.3. Analysis Methods
3. Results
3.1. Thermal Analysis
- the removal of the residual water (the absorbed and the coordinated water) with a mass loss of about 5.09% (30–61 °C),
- the weight loss of the organic fragment with formation of volatile compounds, with a total mass loss of approximately 9.13% (61–1000 °C).
3.2. Structural Characterization of Spinels
3.3. FT–IR Spectroscopy
3.4. Morphological Characteristics
3.5. UV-Vis Spectroscopy
3.6. CIE Diagram of the Obtained Pigments
3.7. EDX Mapping
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Enríquez, E.; Reinosa, J.; Fuertes, V.; Fernández, J. Advances and challenges of ceramic pigments for inkjet printing. Ceram. Int. 2022, 48, 31080–31101. [Google Scholar] [CrossRef]
- Mindru, I.; Gingasu, D.; Marinescu, G.; Patron, L. Design de Nanomateriale Oxidice cu Structura Spinelica. De la Sinteza la Aplicatii, 1st ed.; Matrixrom: Bucharest, Romania, 2018; pp. 1–148. (In Romanian) [Google Scholar]
- Livage, J.; Sanchez, C.; Henry, M.; Doeuff, S. The chemistry of the sol-gel process. Solid State Ionics 1989, 32–33, 633–638. [Google Scholar] [CrossRef]
- Ilosvai, A.M.; Dojcsak, D.; Váradi, C.; Nagy, M.; Kristály, F.; Fisercz, B.; Vanyorek, L. Sonochemical Combined Synthesis of Nickel Ferrite and Cobalt Ferrite Magnetic Nanoparticles and Their Application in Glycan Analysis. Int. J. Mol. Sci. 2022, 23, 5081. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-W.; Tamilalagan, E.; Chen, S.M.; Akilarasan, M.; Maheshwaran, S.; Liu, X. An Ultra-Sensitive Electrochemical Sensor for the Detection of Carcinogen Oxidative Stress 4-Nitroquinoline N-Oxide in Biologic Matrices Based on Hierarchical Spinel Structured NiCo2O4 and NiCo2S4; A Comparative Study. Int. J. Mol. Sci. 2020, 21, 2373. [Google Scholar] [CrossRef] [PubMed]
- Younis, M.; Saleem, M.; Atiq, S.; Naseem, S. Magnetic phase transition and magneto-dielectric analysis of spinel chromites: MCr2O4 (M = Fe, Co and Ni). Ceram. Int. 2018, 44, 10229–10235. [Google Scholar] [CrossRef]
- Dippong, T.; Levei, E.A.; Deac, I.G.; Petean, I.; Cadar, O. Dependence of Structural, Morphological and Magnetic Properties of Manganese Ferrite on Ni-Mn Substitution. Int. J. Mol. Sci. 2022, 23, 3097. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, X.; Zou, C.; Chen, R.; Cheng, L.; Han, B.; Liu, H. Insight into the Effect of Counterions on the Chromatic Properties of Cr-Doped Rutile TiO2-Based Pigments. Mater 2022, 15, 2049. [Google Scholar] [CrossRef]
- Tena, M.Á.; Mendoza, R.; Trobajo, C.; García-Granda, S. Cobalt Minimisation in Violet Co3P2O8 Pigment. Materials 2022, 15, 1111. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, P.; Prinsloo, A.R.E.; Doyle, B.P.; Carleschi, E.; Sheppard, C.J. Structural and magnetic properties of (Co1–xNix)Cr2O4 (x = 0.5, 0.25) nanoparticles. AIP Adv. 2018, 8, 056424. [Google Scholar] [CrossRef] [Green Version]
- Anju, Y.R.S.; Pötschke, P.; Pionteck, J.; Krause, B.; Kuritka, I.; Vilcáková, J.; Škoda, D.; Urbánek, P.; Machovský, M.; Masar, M.; et al. CuxCo1−xFe2O4 (x = 0.33, 0.67, 1) Spinel Ferrite Nanoparticles Based Thermoplastic Polyurethane Nanocomposites with Reduced Graphene Oxide for Highly Efficient Electromagnetic Interference Shielding. Int. J. Mol. Sci. 2022, 23, 2610. [Google Scholar] [CrossRef]
- Novikov, V.A.; Xanthopoulou, G.G.; Amosov, A.P. Solution Combustion Synthesis of Nanostructured NiCr2O4 Spinel and Its Catalytic Activity in CO Oxidation. Int. J. Self-Propagating High-Temp. Synth. 2021, 30, 246–250. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, E.; He, W.; Deng, X.; Huang, J.; Ding, M.; Wei, X.; Liu, X.; Xu, X. NiCo2O4-Based Supercapacitor Nanomaterials. J. Nanomater. 2017, 7, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Gao, J.; Hong, W. Ni-based chromite spinel for high-performance supercapacitors. RSC Adv. 2016, 6, 29646–29653. [Google Scholar] [CrossRef]
- Dippong, T.; Levei, E.A.; Goga, F.; Petean, I.; Avram, A.; Cadar, O. The impact of polyol structure on the formation of Zn0.6Co0.4Fe2O4 spinel-based pigments. J. Sol-Gel Sci. Technol. 2019, 92, 736–744. [Google Scholar] [CrossRef]
- Lazau, I.; Pacurariu, C.; Ecsedi, Z.; Ianos, R. Metode Neconvenţionale Utilizate în Sinteza Compuşilor Oxidici, 1st ed.; Politehnica: Timisoara, Romania, 2006; pp. 1–500. (In Romanian) [Google Scholar]
- Chavarriaga, E.; Lopera, A.; Bergmann, C.; Alarcónd, J. Effect of the substitution of Co2+ by Mg2+ on the color of the CoCr2O4 ceramic pigment synthesized by solution combustion. Bol. Soc. Esp. Ceram. Vidr. 2020, 59, 176–184. [Google Scholar] [CrossRef]
- Grazenaite, E.; Pinkas, J.; Beganskiene, A.; Kareiva, A. Sol–gel and sonochemically derived transition metal (Co, Ni, Cu, and Zn) chromites as pigments: A comparative study. Ceram. Int. 2016, 42, 9402–9412. [Google Scholar] [CrossRef]
- Enhessari, M.; Salehabadi, A.; Khanahmadzadeh, S.; Arkat, K.; Nouri, J. Modified Sol-Gel Processing of NiCr2O4 Nanoparticles; Structural Analysis and Optical Band Gap. High Temp. Mater. Process. 2017, 36, 121–125. [Google Scholar] [CrossRef]
- Suciu, C.; Hoffmann, A.C.; Vik, A.; Goga, F. Effect of calcination conditions and precursor proportions on the properties of YSZ nanoparticles obtained by modified sol–gel route. J. Chem. Eng. 2008, 138, 608–615. [Google Scholar] [CrossRef]
- Abdullah, M.M.; Rajab, F.M.; Al-Abbas, S.M. Structural and optical characterization of Cr2O3 nanostructures: Evaluation of its dielectric properties. AIP Adv. 2014, 4, 027121. [Google Scholar] [CrossRef]
- Mohanty, P.; Sheppard, C.J.; Prinsloo, A.R.E.; Roos, W.D.; Olivi, L.; Aquilanti, G. Effect of cobalt substitution on the magnetic properties of nickel chromite. J. Magn. Magn. Mater. 2018, 451, 20–28. [Google Scholar] [CrossRef]
- Ptak, M.; Maczka, M.; Gągor, A.; Pikul, A.; Macalik, L.; Hanuza, J. Temperature-dependent XRD, IR, magnetic, SEM and TEM studies of Jahn–Teller distorted NiCr2O4 powders. J. Solid State Chem. 2013, 201, 270–279. [Google Scholar] [CrossRef]
- Castiglioni, G.L.; Minelli, G.; Portab, P.; Vaccari, A. Synthesis and Properties of Spinel-Type Co–Cu–Mg–Zn–Cr Mixed Oxides. J. Solid State Chem. 2000, 152, 526–532. [Google Scholar] [CrossRef]
- Gao, Y.; Chang, H.; Wu, Q.; Wang, H.-Y.; Pang, Y.-B.; Liu, F.; Zhu, H.-J.; Yun, Y.-h. Optical properties and magnetic properties of antisite-disordered Ni1−xCoxCr2O4 spinels. Trans. Nonferrous Met. Soc. China 2017, 27, 863–867. [Google Scholar] [CrossRef]
- Wang, Z.; Saxena, S.; Lazor, P.; O’Neill, H. An in-situ Raman spectroscopic study of pressure induced dissociation of spinel NiCr2O4. J. Phys. Chem. Solids 2003, 64, 425–431. [Google Scholar] [CrossRef]
- Ahmadyari-Sharamin, M.; Hassanzadeh-Tabrizi, S. Polyacrylamide gel synthesis, characterization, and optical properties of Co1−xNixCr2O4 spinel nanopigment. J. Sol-Gel Sci. Technol. 2021, 99, 534–545. [Google Scholar] [CrossRef]
- Han, A.; Ye, M.; Zhang, Z.; Liao, J.; Li, N. Crystal structure and optical properties of CoCr2O4–NiCr2O4 solid solutions prepared by low-temperature combustion synthesis method. Adv. Mater. Res. 2013, 616–618, 1877–1881. [Google Scholar] [CrossRef]
- Mączka, M.; Ptak, M.; Kurnatowska, M.; Hanuza, J. Synthesis, phonon and optical properties of na-nosized CoCr2O4. Mater. Chem. Phys. 2013, 138, 682–688. [Google Scholar] [CrossRef]
- El-Kemary, M.; Nagy, N.; El-Mehasseb, I. Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose. Mater. Sci. Semicond. Process. 2013, 16, 1747–1752. [Google Scholar] [CrossRef]
- Liang, S.-t.; Zhang, H.-l.; Luo, M.-t.; Luo, K.-j.; Li, P.; Xu, H.-b.; Zhang, Y. Colour performance investigation of a Cr2O3 green pigment prepared via the thermal decomposition of CrOOH. Ceram. Int. 2014, 40, 4367–4373. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, R.; Verma, V.; Kumar, R.K. Role of Ni2+ substituent on the structural, optical and magnetic properties of chromium oxide (Cr2-x NixO3) nanoparticles. Ceram. Int. 2020, 46, 24071–24082. [Google Scholar] [CrossRef]
- Li, L.; Yan, Z.F.; Lu, G.Q.; Zhu, Z.H. Synthesis and structure characterization of chromium oxide prepared by solid thermal decomposition reaction. J. Phys. Chem. B 2006, 110, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, V.K.; Nagarajan, R. Influencing Optical and Magnetic Properties of NiCr2O4 by the Incorporation of Fe(III) for Cr(III) Following Epoxide Gel Synthesis. J. Electron. Mater. 2019, 48, 1139–1146. [Google Scholar] [CrossRef]
- Costa, G.; Ribeiro, M.; Hajjaji, W.; Seabra, M.; Labrincha, J.; Dondi, M.; Cruciani, G. Ni-doped hibonite (CaAl12O19): A new turquoise blue ceramic pigment. J. Eur. Ceram. Soc. 2009, 29, 2671–2678. [Google Scholar] [CrossRef]
Ni Concentration (%) | Average Apparent Size and Standard Deviation (nm) | Cell Parameter a (Å) | Cell Parameter c (Å) | Average Maximum Strain and Standard Deviation |
---|---|---|---|---|
0 | 39.902 (9.847) | 8.33325 | 1.9764 (0.0007) | |
0.25 | 65.478 (26.594) | 8.33072 | 1.9764 (0.0007) | |
0.5 | 92.199 (52.736) | 8.32525 | 1.9520 (0.0005) | |
0.75 | 99.428 (61.333) | 8.31979 | 1.9764 (0.0007) | |
1 | 58.983 (13.616) | 5.84012 | 8.42349 | 5.3902 (0.0046) |
Ni Concentration (%) | Mass (%) Phase 1 | Mass (%) Phase 2 (Cr2O3) | Density Phase 1 (g/cm3) | Density Phase 2 (g/cm3) |
---|---|---|---|---|
0 | 90.91 (2.25) | 9.09 (0.85) | 5.209 | 5.229 |
0.25 | 93.22 (2.23) | 6.78 (0.74) | 5.209 | 5.210 |
0.5 | 97.12 (2.32) | 2.88 (0.50) | 5.224 | 5.248 |
0.75 | 95.36 (2.00) | 4.65 (0.71) | 5.234 | 5.250 |
1 | - | - | 5.241 | - |
Sample Co(1−x)NixCr2O4 (% Ni) | Color Coordinates (x, y) | ||
---|---|---|---|
x | y | Representation in the CIE Diagram | |
x = 0.25 | 0.3865 | 0.3295 | dark circle |
x = 0.50 | 0.3585 | 0.2957 | pink |
x = 0.75 | 0.3361 | 0.2801 | purple |
x = 1 | 0.3118 | 0.2762 | blue |
Pigment | Matte Glaze | Glossy Glaze | ||||||
---|---|---|---|---|---|---|---|---|
CIELab Coordonates | L* | a* | b* | G | L* | a* | b* | G |
Co0.75Ni0.25Cr2O4 | 32.32 | −9.78 | −3.2 | 50.5 | 40.69 | −10.63 | 5.65 | 86.1 |
Co0.5Ni0.5Cr2O4 | 31.31 | −6.67 | 1.2 | 57.6 | 42.03 | −9.45 | 0.15 | 83.8 |
Co0.25Ni0.75Cr2O4 | 31.09 | −4.07 | 3.82 | 58.1 | 43.34 | −6.63 | 4.98 | 86.7 |
NiCr2O4 | 31.71 | −0.62 | 6.74 | 52.7 | 45.72 | −1.63 | 11.10 | 86.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goga, F.; Bortnic, R.A.; Avram, A.; Zagrai, M.; Barbu Tudoran, L.; Mereu, R.A. The Effect of Ni2+ Ions Substitution on Structural, Morphological, and Optical Properties in CoCr2O4 Matrix as Pigments in Ceramic Glazes. Materials 2022, 15, 8713. https://doi.org/10.3390/ma15248713
Goga F, Bortnic RA, Avram A, Zagrai M, Barbu Tudoran L, Mereu RA. The Effect of Ni2+ Ions Substitution on Structural, Morphological, and Optical Properties in CoCr2O4 Matrix as Pigments in Ceramic Glazes. Materials. 2022; 15(24):8713. https://doi.org/10.3390/ma15248713
Chicago/Turabian StyleGoga, Firuta, Rares Adrian Bortnic, Alexandra Avram, Mioara Zagrai, Lucian Barbu Tudoran, and Raluca Anca Mereu. 2022. "The Effect of Ni2+ Ions Substitution on Structural, Morphological, and Optical Properties in CoCr2O4 Matrix as Pigments in Ceramic Glazes" Materials 15, no. 24: 8713. https://doi.org/10.3390/ma15248713
APA StyleGoga, F., Bortnic, R. A., Avram, A., Zagrai, M., Barbu Tudoran, L., & Mereu, R. A. (2022). The Effect of Ni2+ Ions Substitution on Structural, Morphological, and Optical Properties in CoCr2O4 Matrix as Pigments in Ceramic Glazes. Materials, 15(24), 8713. https://doi.org/10.3390/ma15248713