WO3 Nanopores Array Modified by Au Trisoctahedral NPs: Formation, Characterization and SERS Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Flat WO3 and WO3 Nanoporous Array
2.3. Synthesis of Au Trisoctahedral Nanoparticles
2.4. Characterization Methods
3. Results and Discussion
3.1. Structural Characterization
3.2. The XPS (X-ray Photoelectron Spectroscopy) Surface Characterization
3.3. Au Trisoctahedrons Characterization
3.4. SERS Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cialla, D.; März, A.; Böhme, R.; Theil, F.; Weber, K.; Schmitt, M.; Popp, J. Surface-Enhanced Raman Spectroscopy (SERS): Progress and Trends. Anal. Bioanal. Chem. 2012, 403, 27–54. [Google Scholar] [CrossRef] [PubMed]
- Green, M.; Liu, F.M. SERS Substrates Fabricated by Island Lithography: The Silver/Pyridine System. J. Phys. Chem. B 2003, 107, 13015–13021. [Google Scholar] [CrossRef]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Jimenez-Cisneros, J.; Galindo-Lazo, J.P.; Mendez-Rojas, M.A.; Campos-Delgado, J.R.; Cerro-Lopez, M. Plasmonic Spherical Nanoparticles Coupled with Titania Nanotube Arrays Prepared by Anodization as Substrates for Surface-Enhanced Raman Spectroscopy Applications: A Review. Molecules 2021, 26, 7443. [Google Scholar] [CrossRef]
- Pisarek, M.; Roguska, A.; Kudelski, A.; Holdynski, M.; Janik-Czachor, M. Self-Organized TiO2, Al2O3 and ZrO2 Nanotubular Layers: Properties and Applications. In Comprehensive Guide for Nanocoatings Technology, Vol 3: Properties and Development; Aliofkhazraei, E.M., Ed.; Nova Science: New York, NY, USA, 2015; pp. 435–462. [Google Scholar]
- Tang, H.; Meng, G.; Huang, Q.; Zhang, Z.; Huang, Z.; Zhu, C. Arrays of Cone-Shaped ZnO Nanorods Decorated with Ag Nanoparticles as 3D Surface-Enhanced Raman Scattering Substrates for Rapid Detection of Trace Polychlorinated Biphenyls. Adv. Funct. Mater. 2012, 22, 218–224. [Google Scholar] [CrossRef]
- Krajczewski, J.; Dumiszewska, E.; Czolak, D.; Turczyniak Surdacka, S.; Kudelski, A. New, Epitaxial Approach to SERS Platform Preparation—InP Nanowires Coated by an Au Layer as a New, Highly Active, and Stable SERS Platform. Appl. Surf. Sci. 2023, 607, 155096. [Google Scholar] [CrossRef]
- Krajczewski, J.; Turczyniak-Surdacka, S.; Dziubałtowska, M.; Ambroziak, R.; Kudelski, A. Ordered Zirconium Dioxide Nanotubes Covered with an Evaporated Gold Layer as Reversible, Chemically Inert and Very Efficient Substrates for Surface-Enhanced Raman Scattering (SERS) Measurement. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 275, 121183. [Google Scholar] [CrossRef]
- Ambroziak, R.; Hołdyński, M.; Płociński, T.; Pisarek, M.; Kudelski, A. Cubic Silver Nanoparticles Fixed on TiO2 Nanotubes as Simple and Efficient Substrates for Surface Enhanced Raman Scattering. Materials 2019, 12, 3373. [Google Scholar] [CrossRef] [Green Version]
- Mampallil, D.; Eral, H.B. A Review on Suppression and Utilization of the Coffee-Ring Effect. Adv. Colloid Interface Sci. 2018, 252, 38–54. [Google Scholar] [CrossRef]
- Li, X.; Bai, J.; Liu, Q.; Li, J.; Zhou, B. WO3/W Nanopores Sensor for Chemical Oxygen Demand (COD) Determination under Visible Light. Sensors 2014, 14, 10680–10690. [Google Scholar] [CrossRef]
- Nah, Y.-C.; Ghicov, A.; Kim, D.; Schmuki, P. Enhanced Electrochromic Properties of Self-Organized Nanoporous WO3. Electrochem. Commun. 2008, 10, 1777–1780. [Google Scholar] [CrossRef]
- Zhang, T.; Paulose, M.; Neupane, R.; Schaffer, L.A.; Rana, D.B.; Su, J.; Guo, L.; Varghese, O.K. Nanoporous WO3 Films Synthesized by Tuning Anodization Conditions for Photoelectrochemical Water Oxidation. Sol. Energy Mater. Sol. Cells 2020, 209, 110472. [Google Scholar] [CrossRef]
- Fernández-Domene, R.M.; Roselló-Márquez, G.; Sánchez-Tovar, R.; Cifre-Herrando, M.; García-Antón, J. Synthesis of WO3 Nanorods through Anodization in the Presence of Citric Acid: Formation Mechanism, Properties and Photoelectrocatalytic Performance. Surf. Coat. Technol. 2021, 422, 127489. [Google Scholar] [CrossRef]
- Wu, S.; Li, Y.; Chen, X.; Liu, J.; Gao, J.; Li, G. Fabrication of WO3·2H2O Nanoplatelet Powder by Breakdown Anodization. Electrochem. Commun. 2019, 104, 106479. [Google Scholar] [CrossRef]
- Martins, A.S.; Guaraldo, T.T.; Wenk, J.; Mattia, D.; Boldrin Zanoni, M.V. Nanoporous WO3 Grown on a 3D Tungsten Mesh by Electrochemical Anodization for Enhanced Photoelectrocatalytic Degradation of Tetracycline in a Continuous Flow Reactor. J. Electroanal. Chem. 2022, 920, 116617. [Google Scholar] [CrossRef]
- Zych, M.; Syrek, K.; Zaraska, L.; Sulka, G.D. Improving Photoelectrochemical Properties of Anodic WO3 Layers by Optimizing Electrosynthesis Conditions. Molecules 2020, 25, 2916. [Google Scholar] [CrossRef] [PubMed]
- Hahn, R.; Macak, J.M.; Schmuki, P. Rapid Anodic Growth of TiO2 and WO3 Nanotubes in Fluoride Free Electrolytes. Electrochem. Commun. 2007, 9, 947–952. [Google Scholar] [CrossRef]
- Altomare, M.; Nguyen, N.T.; Schmuki, P. High Aspect-Ratio WO3 Nanostructures Grown By Self-Organizing Anodization in Hot Pure O-H3 PO4. In ECS Meeting Abstracts; IOP Publishing: Bristol, UK, 2016; Volume MA2016-01, p. 2123. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Q.; Lu, X.; Lee, J.Y. Seed-Mediated Synthesis of Monodisperse Concave Trisoctahedral Gold Nanocrystals with Controllable Sizes. J. Phys. Chem. C 2010, 114, 11119–11126. [Google Scholar] [CrossRef]
- Ng, C.; Ye, C.; Ng, Y.H.; Amal, R. Flower-Shaped Tungsten Oxide with Inorganic Fullerene-like Structure: Synthesis and Characterization. Cryst. Growth Des. 2010, 10, 3794–3801. [Google Scholar] [CrossRef]
- Zhan, W.T.; Ni, H.W.; Chen, R.S.; Wang, Z.Y.; Li, Y.; Li, J.H. One-Step Hydrothermal Preparation of TiO2/WO3 Nanocomposite Films on Anodized Stainless Steel for Photocatalytic Degradation of Organic Pollutants. Thin Solid Films 2013, 548, 299–305. [Google Scholar] [CrossRef]
- Watcharenwong, A.; Chanmanee, W.; de Tacconi, N.R.; Chenthamarakshan, C.R.; Kajitvichyanukul, P.; Rajeshwar, K. Anodic Growth of Nanoporous WO3 Films: Morphology, Photoelectrochemical Response and Photocatalytic Activity for Methylene Blue and Hexavalent Chrome Conversion. J. Electroanal. Chem. 2008, 612, 112–120. [Google Scholar] [CrossRef]
- De Tacconi, N.R.; Chenthamarakshan, C.R.; Yogeeswaran, G.; Watcharenwong, A.; de Zoysa, R.S.; Basit, N.A.; Rajeshwar, K. Nanoporous TiO2 and WO3 Films by Anodization of Titanium and Tungsten Substrates: Influence of Process Variables on Morphology and Photoelectrochemical Response. J. Phys. Chem. B 2006, 110, 25347–25355. [Google Scholar] [CrossRef] [PubMed]
- Momeni, M.M.; Ghayeb, Y.; Davarzadeh, M. Single-Step Electrochemical Anodization for Synthesis of Hierarchical WO3–TiO2 Nanotube Arrays on Titanium Foil as a Good Photoanode for Water Splitting with Visible Light. J. Electroanal. Chem. 2015, 739, 149–155. [Google Scholar] [CrossRef]
- Syrek, K.; Zaraska, L.; Zych, M.; Sulka, G.D. The Effect of Anodization Conditions on the Morphology of Porous Tungsten Oxide Layers Formed in Aqueous Solution. J. Electroanal. Chem. 2018, 829, 106–115. [Google Scholar] [CrossRef]
- Shi, W.; Guo, X.; Cui, C.; Jiang, K.; Li, Z.; Qu, L.; Wang, J.-C. Controllable Synthesis of Cu2O Decorated WO3 Nanosheets with Dominant (0 0 1) Facets for Photocatalytic CO2 Reduction under Visible-Light Irradiation. Appl. Catal. B Environ. 2019, 243, 236–242. [Google Scholar] [CrossRef]
- Wang, S.L.; Mak, Y.L.; Wang, S.; Chai, J.; Pan, F.; Foo, M.L.; Chen, W.; Wu, K.; Xu, G.Q. Visible–Near-Infrared-Light-Driven Oxygen Evolution Reaction with Noble-Metal-Free WO2–WO3 Hybrid Nanorods. Langmuir 2016, 32, 13046–13053. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.Y.; Gong, L.; Liu, X.; Tao, Y.T.; Zhang, W.H.; Chen, S.H.; Meng, H.; Chen, J. XPS Studies on Surface Reduction of Tungsten Oxide Nanowire Film by Ar+ Bombardment. J. Electron Spectrosc. Relat. Phenom. 2012, 185, 112–118. [Google Scholar] [CrossRef]
- Bouvard, O.; Krammer, A.; Schüler, A. In Situ Core-Level and Valence-Band Photoelectron Spectroscopy of Reactively Sputtered Tungsten Oxide Films. Surf. Interface Anal. 2016, 48, 660–663. [Google Scholar] [CrossRef]
- Lu, S.-S.; Zhang, L.-M.; Dong, Y.-W.; Zhang, J.-Q.; Yan, X.-T.; Sun, D.-F.; Shang, X.; Chi, J.-Q.; Chai, Y.-M.; Dong, B. Tungsten-Doped Ni–Co Phosphides with Multiple Catalytic Sites as Efficient Electrocatalysts for Overall Water Splitting. J. Mater. Chem. A 2019, 7, 16859–16866. [Google Scholar] [CrossRef]
- Ciftyürek, E.; Šmíd, B.; Li, Z.; Matolín, V.; Schierbaum, K. Spectroscopic Understanding of SnO2 and WO3 Metal Oxide Surfaces with Advanced Synchrotron Based; XPS-UPS and Near Ambient Pressure (NAP) XPS Surface Sensitive Techniques for Gas Sensor Applications under Operational Conditions. Sensors 2019, 19, 4737. [Google Scholar] [CrossRef] [Green Version]
- Lange, M.A.; Krysiak, Y.; Hartmann, J.; Dewald, G.; Cerretti, G.; Tahir, M.N.; Panthöfer, M.; Barton, B.; Reich, T.; Zeier, W.G.; et al. Solid State Fluorination on the Minute Scale: Synthesis of WO3−xFx with Photocatalytic Activity. Adv. Funct. Mater. 2020, 30, 1909051. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Li, H.; Pan, S.; Liu, K.; Hu, S.; Pan, L.; Guo, Y.; Wu, S.; Li, X.; Liu, J. Surface-Enhanced Raman Scattering from Rhodamine 6G on Gold-Coated Self-Organized Silicon Nanopyramidal Array. J. Mater. Res. 2013, 28, 3401–3407. [Google Scholar] [CrossRef]
H2SO4 | NaF | NH4F | (NH4)2SO4 | Geometry of WO3 |
---|---|---|---|---|
1 M | x | x | x | Flat |
1 M | 0.05 M | x | x | Nanopores array |
1 M | 0.1 M | x | x | Nanopores array |
1 M | 0.15 M | x | x | Nanopores array |
1 M | x | 0.1 M | Nanopores array (some deformations) | |
1 M | x | x | 0.1 M | Rough surface |
Results in optimized electrolyte composition: 1 M H2SO4, 0.1M NaF | ||||
Time | ||||
15 min | 30 min | 60 min | ||
Flat with holes | Flat with more holes | Nanopores | ||
Potential (average porous size) | ||||
20 V | 30 V | 40 V | 50 V | |
No pores | Nanopores (58.3 nm) | Nanopores (71.9 nm) | Nanopores (86.2 nm) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krajczewski, J.; Ambroziak, R.; Turczyniak-Surdacka, S.; Dziubałtowska, M. WO3 Nanopores Array Modified by Au Trisoctahedral NPs: Formation, Characterization and SERS Application. Materials 2022, 15, 8706. https://doi.org/10.3390/ma15238706
Krajczewski J, Ambroziak R, Turczyniak-Surdacka S, Dziubałtowska M. WO3 Nanopores Array Modified by Au Trisoctahedral NPs: Formation, Characterization and SERS Application. Materials. 2022; 15(23):8706. https://doi.org/10.3390/ma15238706
Chicago/Turabian StyleKrajczewski, Jan, Robert Ambroziak, Sylwia Turczyniak-Surdacka, and Małgorzata Dziubałtowska. 2022. "WO3 Nanopores Array Modified by Au Trisoctahedral NPs: Formation, Characterization and SERS Application" Materials 15, no. 23: 8706. https://doi.org/10.3390/ma15238706
APA StyleKrajczewski, J., Ambroziak, R., Turczyniak-Surdacka, S., & Dziubałtowska, M. (2022). WO3 Nanopores Array Modified by Au Trisoctahedral NPs: Formation, Characterization and SERS Application. Materials, 15(23), 8706. https://doi.org/10.3390/ma15238706