Nanotopography Evaluation of NiTi Alloy Exposed to Artificial Saliva and Different Mouthwashes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Surface Roughness Parameters 80 × 80 µm
3.2. Surface Roughness Parameters 10 × 10 µm
4. Discussion
4.1. Topography and Surface Roughness of Sample Areas of 80 × 80 µm
4.2. Topography and Surface Roughness of Sample Areas of 10 × 10 µm
5. Conclusions
- The employed experimental setup achieved highly accurate lateral positioning of AFM measurements before and after corrosion tests. The positioning error was approx. 0.1 µm, and it enabled the detection of surface changes induced by low-intensity (realistic) corrosion processes on predefined locations.
- Due to high initial surface roughness and low-intensity corrosion, AFM and SEM analyses performed on large areas (80 × 80 µm) were not able to detect surface changes caused by studied mouthwashes. However, the exclusion of large grooves revealed statistically significant nanotopographic changes in the studied surfaces. Considering that EDS analysis did not reveal any changes in surface chemical composition, it is suggested that corrosion processes induce changes localized on thin surface layers only several nanometers in depth.
- The sample exposed to artificial saliva did not display statistically significant changes in any surface roughness parameter.
- A novel analysis methodology was developed to obtain insight into locations of material gain or material loss based on standard surface roughness parameters Sa, Sdr, Ssk, and S10z. The developed methodology revealed that mouthwashes (Aquafresh® and Listerine®) with fluorine-containing compounds dominantly cause material loss, while mouthwash (Eludril®) with chlorine-containing compounds can cause both material loss and material gain.
- Both fluoride compound-containing mouthwashes caused material loss but induced opposite effects on surface roughness. Findings suggest that these diverging trends are a consequence of preferred corrosion locations, relative to the mean plane. Such behavior could be explained by a difference in wetting and corrosion characteristics caused by the non-active ingredients of the mouthwash. Further research is required to obtain definitive mechanisms.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Duerig, T.W.; Pelton, A.R.; Stöckel, D. The Utility of Superelasticity in Medicine. Biomed. Mater. Eng. 1996, 6, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Kassab, E.; Neelakantan, L.; Frotscher, M.; Swaminathan, S.; Maaß, B.; Rohwerder, M.; Gomes, J.; Eggeler, G. Effect of Ternary Element Addition on the Corrosion Behaviour of NiTi Shape Memory Alloys. Mater. Corros. 2014, 65, 18–22. [Google Scholar] [CrossRef]
- Sun, E.X.; Fine, S.; Nowak, W.B. Electrochemical Behavior of Nitinol Alloy in Ringer’s Solution. J. Mater. Sci. Mater. Med. 2002, 13, 959–964. [Google Scholar] [CrossRef] [PubMed]
- McKay, G.C.; Macnair, R.; MacDonald, C.; Grant, M.H. Interactions of Orthopaedic Metals with an Immortalized Rat Osteoblast Cell Line. Biomaterials 1996, 17, 1339–1344. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, T.; Böhler, E.; Ruhdorfer, S.; Weigl, L.; Wessner, D.; Filipiak, B.; Wichmann, H.E.; Ring, J. Epidemiology of Contact Allergy in Adults. Allergy Eur. J. Allergy Clin. Immunol. 2001, 56, 1192–1196. [Google Scholar] [CrossRef] [Green Version]
- Kao, C.-T.T.; Ding, S.-J.J.; He, H.; Chou, M.Y.; Huang, T.-H.H.; Ming, Y.C.; Huang, T.-H.H. Cytotoxicity of Orthodontic Wire Corroded in Fluoride Solution In Vitro. Angle Orthod. 2007, 77, 349–354. [Google Scholar] [CrossRef]
- Castro, S.M.; Ponces, M.J.; Lopes, J.D.; Vasconcelos, M.; Pollmann, M.C.F.F. Orthodontic Wires and Its Corrosion—The Specific Case of Stainless Steel and Beta-Titanium. J. Dent. Sci. 2015, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Walker, M.P.; White, R.J.; Kula, K.S. Effect of Fluoride Prophylactic Agents on the Mechanical Properties of Nickel-Titanium-Based Orthodontic Wires. Am. J. Orthod. Dentofac. Orthop. 2005, 127, 662–669. [Google Scholar] [CrossRef]
- Boere, G. Influence of Fluoride on Titanium in an Acidic Environment Measured by Polarization Resistance Technique. J. Appl. Biomater. 1995, 6, 283–288. [Google Scholar] [CrossRef]
- Nasakina, E.O.; Sudarchikova, M.A.; Sergienko, K.V.; Konushkin, S.V.; Sevost’Yanov, M.A. Ion Release and Surface Characterization of Nanostructured Nitinol during Long-Term Testing. Nanomaterials 2019, 9, 1569. [Google Scholar] [CrossRef]
- Zhuk, N.P. Kurs Korrozii i Zashhity Metallov [The Course of Corrosion and Protection of Metals]; Metallurgy: Moscow, Russia, 1976. [Google Scholar]
- Ulig, G.G.; Revi, G. Korrozija i Bor’ba s Nej. Vvedenie v Korrozionnuju Nauku i Tehniku [Corrosion and Its Prevention]; Chemistry: Leningrad, Russia, 1989. [Google Scholar]
- Hu, T.; Chu, C.; Xin, Y.; Wu, S.; Yeung, K.W.K.; Chu, P.K. Corrosion Products and Mechanism on NiTi Shape Memory Alloy in Physiological Environment. J. Mater. Res. 2010, 25, 350–358. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, J.; Han, E.H.; Ke, W. Influence of Fluoride and Chloride on Corrosion Behavior of NiTi Orthodontic Wires. Acta Biomater. 2007, 3, 807–815. [Google Scholar] [CrossRef]
- Huang, H.H.; Lee, T.H.; Huang, T.K.; Lin, S.Y.; Chen, L.K.; Chou, M.Y. Corrosion Resistance of Different Nickel-Titanium Archwires in Acidic Fluoride-Containing Artificial Saliva. Angle Orthod. 2010, 80, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Schiff, N.; Grosgogeat, B.; Lissac, M.; Dalard, F. Influence of Fluoridated Mouthwashes on Corrosion Resistance of Orthodontics Wires. Biomaterials 2004, 25, 4535–4542. [Google Scholar] [CrossRef]
- Schiff, N.; Boinet, M.; Morgon, L.; Lissac, M.; Dalard, F.; Grosgogeat, B. Galvanic Corrosion between Orthodontic Wires and Brackets in Fluoride Mouthwashes. Eur. J. Orthod. 2006, 28, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Pulikkottil, V.J.; Chidambaram, S.; Bejoy, P.U.; Femin, P.K.; Paul, P.; Rishad, M. Corrosion Resistance of Stainless Steel, Nickel-Titanium, Titanium Molybdenum Alloy, and Ion-Implanted Titanium Molybdenum Alloy Archwires in Acidic Fluoride-Containing Artificial Saliva: An In Vitro Study. J. Pharm. Bioallied Sci. 2016, 8, S96–S99. [Google Scholar] [CrossRef]
- Osak, P.; Łosiewicz, B. EIS Study on Interfacial Properties of Passivated Nitinol Orthodontic Wire in Saliva Modified with Eludril® Mouthwash. Prot. Met. Phys. Chem. Surfaces 2018, 54, 680–688. [Google Scholar] [CrossRef]
- Kožuh, S.; Vrsalović, L.; Gojić, M.; Gudić, S.; Kosec, B. Comparison of the Corrosion Behavior and Surface Morphology of Niti Alloy and Stainless Steels in Sodium Chloride Solution. J. Min. Metall. Sect. B Metall. 2016, 52, 53–61. [Google Scholar] [CrossRef]
- Kassab, E.J.; Gomes, J.P. Assessment of Nickel Titanium and Beta Titanium Corrosion Resistance Behavior in Fluoride and Chloride Environments. Angle Orthod. 2013, 83, 864–869. [Google Scholar] [CrossRef]
- Mirhashemi, A.; Jahangiri, S.; Kharrazifard, M. Release of Nickel and Chromium Ions from Orthodontic Wires Following the Use of Teeth Whitening Mouthwashes. Prog. Orthod. 2018, 19, 4. [Google Scholar] [CrossRef]
- Huang, H.H.; Chiu, Y.H.; Lee, T.H.; Wu, S.C.; Yang, H.W.; Su, K.H.; Hsu, C.C. Ion Release from NiTi Orthodontic Wires in Artificial Saliva with Various Acidities. Biomaterials 2003, 24, 3585–3592. [Google Scholar] [CrossRef] [PubMed]
- Danaei, S.M.; Safavi, A.; Roeinpeikar, S.M.M.; Oshagh, M.; Iranpour, S.; Omidekhoda, M. Ion Release from Orthodontic Brackets in 3 Mouthwashes: An In-Vitro Study. Am. J. Orthod. Dentofac. Orthop. 2011, 139, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Rocher, P.; El Medawar, L.; Hornez, J.-C.; Traisnel, M.; Breme, J.; Hildebrand, H. Biocorrosion and Cytocompatibility Assessment of NiTi Shape Memory Alloys. Scr. Mater. 2004, 50, 255–260. [Google Scholar] [CrossRef]
- Huang, H.-H.H. Surface Characterizations and Corrosion Resistance of Nickel-Titanium Orthodontic Archwires in Artificial Saliva of Various Degrees of Acidity. J. Biomed. Mater. Res. Part A 2005, 74A, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Figueira, N.; Silva, T.M.; Carmezim, M.J.; Fernandes, J.C.S. Corrosion Behaviour of NiTi Alloy. Electrochim. Acta 2009, 54, 921–926. [Google Scholar] [CrossRef]
- Huang, H.-H.H. Variation in Corrosion Resistance of Nickel-Titanium Wires from Different Manufacturers. Angle Orthod. 2005, 75, 661–665. [Google Scholar] [CrossRef]
- Es-Souni, M.; Es-Souni, M.; Fischer-Brandies, H. On the Properties of Two Binary NiTi Shape Memory Alloys. Effects of Surface Finish on the Corrosion Behaviour and In Vitro Biocompatibility. Biomaterials 2002, 23, 2887–2894. [Google Scholar] [CrossRef]
- Perinetti, G.; Contardo, L.; Ceschi, M.; Antoniolli, F.; Franchi, L.; Baccetti, T.; Di Lenarda, R. Surface Corrosion and Fracture Resistance of Two Nickel-Titanium-Based Archwires Induced by Fluoride, PH, and Thermocycling. An In Vitro Comparative Study. Eur. J. Orthod. 2012, 34, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.H. Variation in Surface Topography of Different NiTi Orthodontic Archwires in Various Commercial Fluoride-Containing Environments. Dent. Mater. 2007, 23, 24–33. [Google Scholar] [CrossRef]
- Ogawa, C.M.; Faltin, K.; Maeda, F.A.; Ortolani, C.L.F.; Guaré, R.O.; Cardoso, C.A.B.; Costa, A.L.F. In Vivo Assessment of the Corrosion of Nickel–Titanium Orthodontic Archwires by Using Scanning Electron Microscopy and Atomic Force Microscopy. Microsc. Res. Tech. 2020, 83, 928–936. [Google Scholar] [CrossRef]
- Belasic, T.Z.; Pejova, B.; Curkovic, H.O.; Kamenar, E.; Cetenovic, B.; Spalj, S. Influence of Intraoral Application of Antiseptics and Fluorides during Orthodontic Treatment on Corrosion and Mechanical Characteristics of Nickel-Titanium Alloy in Orthodontic Appliances. Angle Orthod. 2021, 91, 528–537. [Google Scholar] [CrossRef]
- Hunt, N.P.; Cunningham, S.J.; Golden, C.G.; Sheriff, M. An Investigation into the Effects of Polishing on Surface Hardness and Corrosion of Orthodontic Archwires. Angle Orthod. 1999, 69, 433–440. [Google Scholar] [CrossRef]
- Močnik, P.; Kosec, T.; Kovač, J.; Bizjak, M. The Effect of PH, Fluoride and Tribocorrosion on the Surface Properties of Dental Archwires. Mater. Sci. Eng. C 2017, 78, 682–689. [Google Scholar] [CrossRef]
- Xia, D.-H.; Deng, C.-M.; Macdonald, D.; Jamali, S.; Mills, D.; Luo, J.-L.; Strebl, M.G.; Amiri, M.; Jin, W.; Song, S.; et al. Electrochemical Measurements Used for Assessment of Corrosion and Protection of Metallic Materials in the Field: A Critical Review. J. Mater. Sci. Technol. 2022, 112, 151–183. [Google Scholar] [CrossRef]
- Wolstenholme, J. Electrochemical Methods of Assessing the Corrosion of Painted Metals—A Review. Corros. Sci. 1973, 13, 521–530. [Google Scholar] [CrossRef]
- Jamali, S.S.; Mills, D.J. A Critical Review of Electrochemical Noise Measurement as a Tool for Evaluation of Organic Coatings. Prog. Org. Coatings 2016, 95, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Ross, S.M. Introductory Statistics; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-12-804317-2. [Google Scholar]
- Nahidh, M.; Garma, N.M.; Jasim, E.S. Assessment of Ions Released from Three Types of Orthodontic Brackets Immersed in Different Mouthwashes: An In Vitro Study. J. Contemp. Dent. Pract. 2018, 19, 73–80. [Google Scholar] [CrossRef]
- Moein, N.; Alavi, F.N.; Salari, A.; Mojtahedi, A.; Tajer, A. Effect of Listerine Mouthwash with Green Tea on the Inhibition of Streptococcus Mutans: A Microbiologic Study. Pesqui. Bras. Odontopediatria Clin. Integr. 2020, 20. [Google Scholar] [CrossRef]
- Sedlaček, M.; Gregorčič, P.; Podgornik, B. Use of the Roughness Parameters S Sk and S Ku to Control Friction—A Method for Designing Surface Texturing. Tribol. Trans. 2017, 60, 260–266. [Google Scholar] [CrossRef]
- Nakagawa, M.; Matsuya, S.; Shiraishi, T.; Ohta, M. Effect of Fluoride Concentration and PH on Corrosion Behavior of Titanium for Dental Use. J. Dent. Res. 1999, 78, 1568–1572. [Google Scholar] [CrossRef]
Sample | Medium | Main Corrosive Ingredients |
---|---|---|
Sample 1 | Artificial saliva (Pharmacy “Belgrade”) | - |
Sample 2 | Aquafresh Big teeth® (GSK Consumer Healthcare) | Fluoride-containing compounds 0.05% (255 ppm fluoride) |
Sample 3 | Eludril CLASSIC® (Pierre Fabre medicament) | Chlorine-containing compounds 0.6% |
Sample 4 | Listerine® (Green Tea) (Johnson & Johnson) | Fluoride-containing compounds 0.05% (220 ppm fluoride) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobić, Z.; Kojić, S.; Stojanović, G.M.; Terek, V.; Kovačević, L.; Terek, P. Nanotopography Evaluation of NiTi Alloy Exposed to Artificial Saliva and Different Mouthwashes. Materials 2022, 15, 8705. https://doi.org/10.3390/ma15238705
Bobić Z, Kojić S, Stojanović GM, Terek V, Kovačević L, Terek P. Nanotopography Evaluation of NiTi Alloy Exposed to Artificial Saliva and Different Mouthwashes. Materials. 2022; 15(23):8705. https://doi.org/10.3390/ma15238705
Chicago/Turabian StyleBobić, Zoran, Sanja Kojić, Goran M. Stojanović, Vladimir Terek, Lazar Kovačević, and Pal Terek. 2022. "Nanotopography Evaluation of NiTi Alloy Exposed to Artificial Saliva and Different Mouthwashes" Materials 15, no. 23: 8705. https://doi.org/10.3390/ma15238705
APA StyleBobić, Z., Kojić, S., Stojanović, G. M., Terek, V., Kovačević, L., & Terek, P. (2022). Nanotopography Evaluation of NiTi Alloy Exposed to Artificial Saliva and Different Mouthwashes. Materials, 15(23), 8705. https://doi.org/10.3390/ma15238705