Effect of Solutionizing Duration and Temperature on the Electrochemical Corrosion and Pitting Resistance of Cold-Rolled Super Austenitic Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Solutionizing Treatment
2.2. Characterization of As-Received and Solutionized Samples
2.3. Electrochemical Corrosion Measurements
3. Results
3.1. Characterization of the Solutionized Samples
3.2. Electrochemical Corrosion Behavior of Solutionized Alloy 29
3.2.1. Open Circuit Potential (OCP) Measurement
3.2.2. Linear Polarization Measurement
3.2.3. Cyclic Potentiodynamic Polarization Measurement
3.2.4. Electrochemical Impedance Spectroscopy Measurements
3.2.5. Corroded Surface Characterization
4. Conclusions
- The elongated columnar grains recrystallized to uniform equiaxed grains during the solution annealing. Increasing the solutionizing duration and temperatures resulted in grain growth. This was associated with increased grain boundary migration due to increased thermal kinetics at longer duration and higher temperatures.
- The polarization resistance measurement showed that the corrosion resistance of the untreated alloy sample was increased by about 67, 68, and 76% after solutionizing for a duration of 30, 60, and 120 min, respectively. Similarly, the resistance of the alloy was also increased by about 72, 74, 76, and 42% after solutionizing at temperatures of 1000, 1100, 1200, and 1300 °C, respectively.
- Though the pitting potential for the untreated alloy sample is higher than that of the solutionized samples, the hysteresis loop for all solutionized samples was much lower in comparison. Based on the pitting potential and the hysteresis loop, which defined the pitting and repassivation properties of the alloys, the sample solutionized at 1200 °C for 120 min (sample T120 or AT12) showed an optimum combination of pitting resistance parameters, thus demonstrating the least pitting corrosion damage.
- The total charge transfer resistance obtained from the electrochemical impedance measurement shows an increasing protectiveness of 46 to 60% with increasing solutionizing duration from 30 to 120 min. In addition, a 45, 52, 60, and 26% improvement in the corrosion protection performance for sample solutionized at temperatures of 1000, 1100, 1200, and 1300 °C, respectively.
- The superior corrosion and pitting resistances for the sample solutionized at 1200 °C for 120 min (sample T120 or AT12) were attributable to larger grain size and spontaneous formation of the dense and compact passive film, which conferred it with a higher charge transfer resistance and faster repassivation property.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Totten, G. (Ed.) Steel Heat Treatment Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Jiang, Y.; Zuo, Q.; Liu, F. Mechanism for the multi-stage precipitation of Fe-Ni based alloy. J. Mater. Sci. Technol. 2019, 35, 2582–2590. [Google Scholar] [CrossRef]
- Vainikka, P.; Bankiewicz, D.; Frantsi, A.; Silvennoinen, J.; Hannula, J.; Yrjas, P.; Hupa, M. High temperature corrosion of boiler waterwalls induced by chlorides and bromides. Part 1: Occurrence of the corrosive ash forming elements in a fluidised bed boiler co-firing solid recovered fuel. Fuel 2011, 90, 2055–2063. [Google Scholar] [CrossRef]
- Zhang, L.N.; Szpunar, J.A.; Dong, J.X.; Zhang, M.C. Influence of heat treatment on the microstructure and corrosion behavior of Ni-Fe-Cr alloy 028. J. Mater. Res. 2014, 29, 2147–2155. [Google Scholar] [CrossRef]
- Koutsoukis, T.; Redjaïmia, A.; Fourlaris, G. Phase transformations and mechanical properties in heat treated superaustenitic stainless steels. Mater. Sci. Eng. A 2013, 561, 477–485. [Google Scholar] [CrossRef]
- Koutsoukis, T.; Papadopoulou, E.G.; Zormalia, S.; Kokkonidis, P.; Fourlaris, G. Precipitation sequences in cold deformed superaustenitic stainless steels. Mater. Sci. Technol. 2010, 26, 1041–1048. [Google Scholar] [CrossRef]
- Koutsoukis, T.; Konstantinidis, K.; Papadopoulou, E.G.; Kokkonidis, P.; Fourlaris, G. Comparative study of precipitation effects during aging in superaustenitic and superferritic stainless steels. Mater. Sci. Technol. 2011, 27, 943–950. [Google Scholar] [CrossRef]
- Lee, T.H.O.; Kim, S.J.; Jung, Y.C. Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo-(N) superaustenitic stainless steels aged at 900 °C. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2000, 31, 1713–1723. [Google Scholar] [CrossRef]
- Anburaj, J.; Nazirudeen, S.S.M.; Narayanan, R.; Anandavel, B.; Chandrasekar, A. Ageing of forged superaustenitic stainless steel: Precipitate phases and mechanical properties. Mater. Sci. Eng. A 2012, 535, 99–107. [Google Scholar] [CrossRef]
- Shin, B.H.; Park, J.; Jeon, J.; Heo, S.b.; Chung, W. Effect of cooling rate after heat treatment on pitting corrosion of super duplex stainless steel UNS S 32750. Anti-Corros. Methods Mater. 2018, 65, 492–498. [Google Scholar] [CrossRef]
- Johannes, S.; Ignacio, A.-C.; Erwin, F.; Verena, K.; Mark, L.; Tobias, P.; Stephan, P.; Curtis, R.; Stephan, S.; Benjamin, S.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- ASTM Standard. Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements to Determine the Corrosion Susceptibility of Small Implant Devices; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar] [CrossRef]
- Chen, M.S.; Zou, Z.H.; Lin, Y.C.; Li, H.b.; Yuan, W.Q. Effects of annealing parameters on microstructural evolution of a typical nickel-based superalloy during annealing treatment. Mater. Charact. 2018, 141, 212–222. [Google Scholar] [CrossRef]
- Han, Q.; Zhang, Y.; Wang, L. Effect of Annealing Time on Microstructural Evolution and Deformation Characteristics in 10Mn1.5Al TRIP Steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2015, 46, 1917–1926. [Google Scholar] [CrossRef]
- Martins, M.; Casteletti, L.C. Sigma phase morphologies in cast and aged super duplex stainless steel. Mater. Charact. 2009, 60, 792–795. [Google Scholar] [CrossRef]
- Kuang, W.; Was, G.S.; Miller, C.; Kaufman, M.; Alam, T.; Gwalani, B.; Banerjee, R. The effect of cold rolling on grain boundary structure and stress corrosion cracking susceptibility of twins in alloy 690 in simulated PWR primary water environment. Corros. Sci. 2018, 130, 126–137. [Google Scholar] [CrossRef]
- Zhiying, M.; Xiaohong, C.; Pengfei, G.; Dengcui, Y.; Cui, H.; Yuan, F.; Haixu, L.; Xiandong, Y.; Zhengzhi, Z. Effect of Continuous Annealing Temperature on the Microstructure, Mechanical Properties and Texture of Annealed Drawn and Ironed Plate. Crystals 2021, 11, 1569. [Google Scholar] [CrossRef]
- Souto, R.M.; Alanyali, H. Electrochemical characteristics of steel coated with TiN and TiAlN coatings. Corros. Sci. 2000, 42, 2201–2211. Available online: www.elsevier.com/locate/corsci (accessed on 9 August 2017). [CrossRef]
- Adesina, A.Y.; Gasem, Z.M.; Kumar, A.M. Corrosion Resistance Behavior of Single-Layer Cathodic Arc PVD Nitride-Base Coatings in 1M HCl and 3.5 pct NaCl Solutions. Metall. Mater. Trans. B 2017, 48, 1321–1332. [Google Scholar] [CrossRef]
- Baboian, R.; Haynes, G. Cyclic Polarization Measurements—Experimental Procedure and Evaluation of Test Data. Electrochem. Corros. Test. 2009, 9, 274. [Google Scholar] [CrossRef]
- Choi, W.T.; Oh, K.; Singh, P.M.; Breedveld, V.; Hess, D.W. Hydrophobicity and Improved Localized Corrosion Resistance of Grain Boundary Etched Stainless Steel in Chloride-Containing Environment. J. Electrochem. Soc. 2017, 164, C61–C65. [Google Scholar] [CrossRef]
- Heakal, F.E.; Tantawy, N.S.; Shehta, O.S. Influence of chloride ion concentration on the corrosion behavior of Al-bearing TRIP steels. Mater. Chem. Phys. 2011, 130, 743–749. [Google Scholar] [CrossRef]
- Heakal, F.E.; Ghoneim, A.A.; Fekry, A.M. Stability of spontaneous passive films on high strength Mo-containing stainless steels in aqueous solutions. J. Appl. Electrochem. 2007, 37, 405–413. [Google Scholar] [CrossRef]
- Adesina, A.Y.; Hussain, M.; Hakeem, A.S.; Mohammed, A.S.; Ehsan, M.A.; Sorour, A. Impact of Heating Rate on the Tribological and Corrosion Properties of AISI 52100 Bearing Steel Consolidated via Spark Plasma Sintering. Met. Mater. Int. 2022, 28, 2180–2196. [Google Scholar] [CrossRef]
- Fattah-alhosseini, A.; Golozar, M.A.; Saatchi, A.; Raeissi, K. Effect of solution concentration on semiconducting properties of passive films formed on austenitic stainless steels. Corros. Sci. 2010, 52, 205–209. [Google Scholar] [CrossRef]
- Bellezze, T.; Giuliani, G.; Viceré, A.; Roventi, G. Study of stainless steels corrosion in a strong acid mixture. Part 2: Anodic selective dissolution, weight loss and electrochemical impedance spectroscopy tests. Corros. Sci. 2018, 130, 12–21. [Google Scholar] [CrossRef]
- Bellezze, T.; Giuliani, G.; Roventi, G. Study of stainless steels corrosion in a strong acid mixture. Part 1: Cyclic potentiodynamic polarization curves examined by means of an analytical method. Corros. Sci. 2018, 130, 113–125. [Google Scholar] [CrossRef]
- Mohammadi, F.; Nickchi, T.; Attar, M.M.; Alfantazi, A. EIS study of potentiostatically formed passive film on 304 stainless steel. Electrochim. Acta. 2011, 56, 8727–8733. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, Q.; Yuan, Y.; Guo, S.; Huang, Y. Study on the correlation between passive film and AC corrosion behavior of 2507 super duplex stainless steel in simulated marine environment. J. Electroanal. Chem. 2010, 864, 114072. [Google Scholar] [CrossRef]
- Wallinder, D.; Pan, J.; Leygraf, C.; Delblanc-Bauer, A. EIS and XPS study of surface modification of 316LVM stainless steel after passivation. Corros. Sci. 1998, 41, 275–289. [Google Scholar] [CrossRef]
- Hamdy, A.S.; El-Shenaw, E.; El-Bitar, T. Electrochemical impedance spectroscopy study of the corrosion behavior of some niobium bearing stainless steels in 3.5% NaCl. Int. J. Electrochem. Sci. 2006, 1, 171–180. [Google Scholar]
- Adesina, A.Y.; Drmosh, Q.A.; Kumar, A.M.; Mohamedkhair, A.K. Post-annealing effect on the electrochemical behavior of nanostructured magnetron sputtered W3O films in chloride- and acid-containing environments. Surf. Coat. Technol. 2021, 420, 127334. [Google Scholar] [CrossRef]
- Khan, M.F.; Adesina, A.Y.; Gasem, Z.M. Electrochemical and electrical resistance behavior of cathodic arc PVD TiN, CrN, AlCrN, and AlTiN coatings in simulated proton exchange membrane fuel cell environment. Mater. Corros. 2019, 70, 281–292. [Google Scholar] [CrossRef]
- Kumar, A.M.M.; Babu, R.S.S.; Obot, I.B.B.; Adesina, A.Y.A.Y.; Ibrahim, A.; de Barros, A.L.F.L.F. Promising Hard Carbon Coatings on Cu Substrates: Corrosion and Tribological Performance with Theoretical Aspect. J. Mater. Eng. Perform. 2018, 27, 2306–2316. [Google Scholar] [CrossRef]
Cr | Ni | Mo | Cu | Mn | Si | N | C | P | Fe |
---|---|---|---|---|---|---|---|---|---|
26.7 | 32.8 | 4.4 | 0.9 | <2.0 | <0.7 | <0.1 | <0.02 | <0.02 | 32.45 |
Phase | Fe | Cr | Mo | Ni |
---|---|---|---|---|
γ | 36.1 | 26.7 | 4.4 | 32.8 |
σ | 31.4 | 31.6 | 6.2 | 30.8 |
Carbide (M23C6) | 30.2 | 36.3 | 13.6 | 20 |
Sample ID | Rp (kΩ·cm2) | Icorr (µA/cm2) | εlpr (%) |
---|---|---|---|
A29 | 101.8 | 0.260 | - |
T30 | 311.8 | 0.084 | 67.4 |
T60 | 314.8 | 0.083 | 67.7 |
T120 | 421.4 | 0.062 | 75.8 |
Sample ID | Rp (kΩ·cm2) | Icorr (µA/cm2) | εlpr (%) |
---|---|---|---|
A29 | 101.80 | 0.260 | - |
AT10 | 360.80 | 0.072 | 71.8 |
AT11 | 388.20 | 0.067 | 73.8 |
AT12 | 421.40 | 0.062 | 75.8 |
AT13 | 174.40 | 0.149 | 41.7 |
Sample ID | βa (mV/dec) | βc (mV/dec) | Icorr (µA/cm2) | Ecorr (mV) | CR (mpy) | εcp (%) | Epit (mV) | Ip (µA/cm2) | Ep (mV) | Epit – Ep (mV) |
---|---|---|---|---|---|---|---|---|---|---|
A29 | 543.9 | 270.8 | 0.94 | −144 | 0.151 | - | 965.0 | 23.66 | 747.2 | 217.8 |
T30 | 281.4 | 145.7 | 0.21 | −103 | 0.033 | 77.7 | 859.9 | 33.10 | 823.5 | 36.4 |
T60 | 225.4 | 114.9 | 0.15 | −162 | 0.024 | 84.0 | 944.7 | 26.47 | 819.9 | 124.8 |
T120 | 225.4 | 114.9 | 0.12 | −83.3 | 0.020 | 87.2 | 917.4 | 32.32 | 831.1 | 86.3 |
Sample ID | βa mV/dec | βc mV/dec | Icorr (µA/cm2) | Ecorr (mV) | CR (mpy) | εcp (%) | Epit (mV) | Ip (µA/cm2) | Ep (mV) | Epit – Ep (mV) |
---|---|---|---|---|---|---|---|---|---|---|
A29 | 543.9 | 270.8 | 0.940 | −144 | 0.151 | - | 965.0 | 23.66 | 747.2 | 217.8 |
AT10 | 256.4 | 106.9 | 0.143 | −87.8 | 0.023 | 84.8 | 883.3 | 32.74 | 815.0 | 68.3 |
AT11 | 310.8 | 107.9 | 0.137 | −123 | 0.022 | 85.4 | 875.4 | 53.52 | 830.5 | 44.9 |
AT12 | 225.4 | 114.9 | 0.123 | −83.3 | 0.020 | 86.9 | 917.4 | 32.32 | 831.1 | 86.3 |
AT13 | 299.1 | 128.7 | 0.425 | −133 | 0.068 | 54.8 | 880.8 | 34.29 | 811.8 | 69.0 |
Sample ID | Rs Ω·cm2 | Rct kΩ·cm2 | CPEdl µF/cm2 | ndl | Rf kΩ·cm2 | CPEf µF/cm2 | nf | RT (Rct + Rf) kΩ·cm2 | ꭓ2 ×10−4 | εeis (%) |
---|---|---|---|---|---|---|---|---|---|---|
A29 | 8.24 | 90.56 | 1.01 | 0.92 | 0.32 | 61.19 | 0.81 | 91 | 1.3 | - |
T30 | 8.29 | 152.40 | 8.52 | 0.56 | 15.30 | 80.14 | 0.92 | 168 | 9.6 | 45.81 |
T60 | 8.07 | 170.70 | 5.77 | 0.52 | 19.20 | 112.00 | 0.91 | 190 | 16.9 | 52.14 |
T120 | 7.74 | 204.50 | 0.18 | 0.97 | 21.38 | 95.81 | 0.91 | 226 | 3.8 | 59.77 |
Sample ID | Rs Ω·cm2 | Rct kΩ·cm2 | CPEdl µF/cm2 | ndl | Rf kΩ·cm2 | CPEf µF/cm2 | nf | RT (Rct + Rf) kΩ·cm2 | X2 × 10−4 | εeis (%) |
---|---|---|---|---|---|---|---|---|---|---|
A29 | 8.24 | 90.56 | 1.01 | 0.92 | 0.32 | 61.19 | 0.81 | 91 | 1.3 | - |
AT10 | 7.82 | 141.70 | 24.58 | 0.50 | 23.73 | 84.71 | 0.88 | 165 | 7.2 | 45.06 |
AT11 | 8.03 | 164.00 | 67.25 | 0.79 | 24.09 | 80.50 | 0.91 | 188 | 14.0 | 51.68 |
AT12 | 7.74 | 204.50 | 0.18 | 0.97 | 21.38 | 95.81 | 0.91 | 226 | 3.8 | 59.77 |
AT13 | 7.90 | 94.20 | 206.5 | 0.90 | 28.96 | 101.4 | 0.93 | 123 | 4.6 | 26.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adesina, A.Y.; Ahmed, H.M.; Suleiman, R.K.; Hassan, S.F. Effect of Solutionizing Duration and Temperature on the Electrochemical Corrosion and Pitting Resistance of Cold-Rolled Super Austenitic Stainless Steel. Materials 2022, 15, 8780. https://doi.org/10.3390/ma15248780
Adesina AY, Ahmed HM, Suleiman RK, Hassan SF. Effect of Solutionizing Duration and Temperature on the Electrochemical Corrosion and Pitting Resistance of Cold-Rolled Super Austenitic Stainless Steel. Materials. 2022; 15(24):8780. https://doi.org/10.3390/ma15248780
Chicago/Turabian StyleAdesina, Akeem Yusuf, Hani M. Ahmed, Rami K. Suleiman, and Syed Fida Hassan. 2022. "Effect of Solutionizing Duration and Temperature on the Electrochemical Corrosion and Pitting Resistance of Cold-Rolled Super Austenitic Stainless Steel" Materials 15, no. 24: 8780. https://doi.org/10.3390/ma15248780
APA StyleAdesina, A. Y., Ahmed, H. M., Suleiman, R. K., & Hassan, S. F. (2022). Effect of Solutionizing Duration and Temperature on the Electrochemical Corrosion and Pitting Resistance of Cold-Rolled Super Austenitic Stainless Steel. Materials, 15(24), 8780. https://doi.org/10.3390/ma15248780