X-ray-Induced Scintillation Properties of Nd-Doped Bi4Si3O12 Crystals in Visible and Near-Infrared Regions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Eijk, C.W.E. Inorganic scintillators in medical imaging. Phys. Med. Biol. 2002, 47, R85–R106. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Cheng, Y.; Yang, Y.; Peng, Y.; Li, H.; Xiong, Y.; Zhu, T. Image reconstruction using multi-energy system matrices with a scintillator-based gamma camera for nuclear security applications. Appl. Radiat. Isot. 2020, 163, 109217. [Google Scholar] [CrossRef] [PubMed]
- Picozza, P.; Galper, A.M.; Castellini, G.; Adriani, O.; Altamura, F.; Ambriola, M.; Barbarino, G.C.; Basili, A.; Bazilevskaja, G.A.; Bencardino, R.; et al. PAMELA—A payload for antimatter matter exploration and light-nuclei astrophysics. Astropart. Phys. 2007, 27, 296–315. [Google Scholar] [CrossRef] [Green Version]
- Mao, R.; Zhang, L.; Zhu, R.-Y. Optical and Scintillation Properties of Inorganic Scintillators in High Energy Physics. IEEE Trans. Nucl. Sci. 2008, 55, 2425–2431. [Google Scholar] [CrossRef] [Green Version]
- Yanagida, T.; Fujimoto, Y.; Koshimizu, M.; Watanabe, K.; Sato, H.; Yagi, H.; Yanagitani, T. Positive hysteresis of Ce-doped GAGG scintillator. Opt. Mater. 2014, 36, 2016–2019. [Google Scholar] [CrossRef] [Green Version]
- Nagarkar, V.V.; Gupta, T.K.; Miller, S.R.; Klugerman, Y.; Squillante, M.R.; Entine, G. Structured CsI(Tl) scintillators for X-ray imaging applications. IEEE Trans. Nucl. Sci. 1998, 45, 492–496. [Google Scholar] [CrossRef] [Green Version]
- Moszyński, M.; Gresset, C.; Vacher, J.; Odru, R. Timing properties of BGO scintillator. Nucl. Instrum. Methods Phys. Res. 1981, 188, 403–409. [Google Scholar] [CrossRef]
- Moszyński, M.; Ludziejewski, T.; Wolski, D.; Klamra, W.; Norlin, L.O. Properties of the YAG:Ce scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A 1994, 345, 461–467. [Google Scholar] [CrossRef]
- Quarati, F.G.A.; Alekhin, M.S.; Krämer, K.W.; Dorenbos, P. Co-doping of CeBr3 scintillator detectors for energy resolution enhancement. Nucl. Instrum. Methods Phys. Res. Sect. A 2014, 735, 655–658. [Google Scholar] [CrossRef]
- Ichiba, K.; Takebuchi, Y.; Kimura, H.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Radiation-induced luminescence properties of Ce–doped Mg2SiO4 single crystals. J. Mater. Sci. Mater. Electron. 2021, 32, 25065–25073. [Google Scholar] [CrossRef]
- Moszyński, M.; Wolski, D.; Ludziejewski, T.; Kapusta, M.; Lempicki, A.; Brecher, C.; Wiśniewski, D.; Wojtowicz, A. Properties of the new LuAP:Ce scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A 1997, 385, 123–131. [Google Scholar] [CrossRef]
- Ichiba, K.; Takebuchi, Y.; Kimura, H.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. Photoluminescence, scintillation, and dosimetric properties of Tb-doped Mg2SiO4 single crystals. J. Mater. Sci. Mater. Electron. 2022, 33, 13634–13641. [Google Scholar] [CrossRef]
- Yanagida, T. Inorganic scintillating materials and scintillation detectors. Proc. Jpn. Acad. Ser. B 2018, 94, 75–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Guo, X.; Huang, K.; Sun, X.; Li, X.; Zeng, H.; Zhu, X.; Zhang, Y.; Xie, R. Lead-free bright yellow emissive Rb2AgCl3 scintillators with nanosecond radioluminescence. J. Lumin. 2022, 241, 118500. [Google Scholar] [CrossRef]
- Tseremoglou, S.; Michail, C.; Valais, I.; Ninos, K.; Bakas, A.; Kandarakis, I.; Fountos, G.; Kalyvas, N. Efficiency Properties of Cerium-Doped Lanthanum Chloride (LaCl3:Ce) Single Crystal Scintillator under Radiographic X-ray Excitation. Crystals 2022, 12, 655. [Google Scholar] [CrossRef]
- Abdalla, A.M.; Almalki, S.; Kawaguchi, N.; Yanagida, T. Nanostructured scintillator developed in-house for radon detection. Radiat. Phys. Chem. 2022, 197, 110159. [Google Scholar] [CrossRef]
- Madden, L.; Archer, J.; Li, E.; Wilkinson, D.; Rosenfeld, A. Temporal separation of Cerenkov radiation and scintillation using artificial neural networks in Clinical LINACs. Phys. Medica 2018, 54, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Yung, B.C.; Chandra, S.; Niu, G.; Antaris, A.L.; Chen, X. Near-Infrared-II (NIR-II) Bioimaging via Off-Peak NIR-I Fluorescence Emission. Theranostics 2018, 8, 4141–4151. [Google Scholar] [CrossRef]
- Huang, Y.; Qiu, F.; Chen, R.; Yan, D.; Zhu, X. Fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy. J. Mater. Chem. B 2020, 8, 3772–3788. [Google Scholar] [CrossRef]
- You, J.; Zhang, R.; Zhang, G.; Zhong, M.; Liu, Y.; Van Pelt, C.S.; Liang, D.; Wei, W.; Sood, A.K.; Li, C. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release. J. Control. Release 2012, 158, 319–328. [Google Scholar] [CrossRef]
- Gupta, B.P.; Thakur, N.; Jain, N.P.; Banweer, J.; Jain, S. Osmotically Controlled Drug Delivery System with Associated Drugs. J. Pharm. Pharm. Sci. 2010, 13, 571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okazaki, K.; Fukushima, H.; Nakauchi, D.; Okada, G.; Onoda, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Investigation of Er:Bi4Ge3O12 single crystals emitting near-infrared luminescence for scintillation detectors. J. Alloys Compd. 2022, 903, 163834. [Google Scholar] [CrossRef]
- Akatsuka, M.; Kimura, H.; Onoda, D.; Shiratori, D.; Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. X-ray-induced Luminescence Properties of Nd-doped GdVO4. Sens. Mater. 2021, 33, 2243. [Google Scholar] [CrossRef]
- Akatsuka, M.; Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Optical and Scintillation Properties of YAlO3 Doped with Rare-Earths Emitting Near-infrared Photons. Sens. Mater. 2020, 32, 1373. [Google Scholar] [CrossRef] [Green Version]
- Akatsuka, M.; Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Characterization of Nd: LaVO4 single-crystal scintillator emitting near-infrared photons. Jpn. J. Appl. Phys. 2022, 61, SB1025. [Google Scholar] [CrossRef]
- Lima, A.F.; Souza, S.O.; Lalić, M.V. Electronic structure and optical absorption of the Bi4Ge3O12 and the Bi4Si3O12 scintillators in ultraviolet region: An ab initio study. J. Appl. Phys. 2009, 106, 013715. [Google Scholar] [CrossRef] [Green Version]
- Ishii, M.; Harada, K.; Hirose, Y.; Senguttuvan, N.; Kobayashi, M.; Yamaga, I.; Ueno, H.; Miwa, K.; Shiji, F.; Yiting, F.; et al. Development of BSO (Bi4Si3O12) crystal for radiation detector. Opt. Mater. 2002, 19, 201–212. [Google Scholar] [CrossRef]
- Dahal, D.; Ray, P.; Pan, D. Unlocking the power of optical imaging in the second biological window: Structuring near-infrared II materials from organic molecules to nanoparticles. WIREs Nanomed. Nanobiotechnology 2021, 13, e1734. [Google Scholar] [CrossRef]
- Tanaka, J.T.; Moscardini, S.B.; do Nascimento Melo, W.E.; Brunckova, H.; Nassar, E.J.; Rocha, L.A. NIR Luminescence Enhancement of YVO4:Nd Phosphor for Biological Application. J. Fluoresc. 2021, 31, 209–217. [Google Scholar] [CrossRef]
- Yanagida, T.; Kamada, K.; Fujimoto, Y.; Yagi, H.; Yanagitani, T. Comparative study of ceramic and single crystal Ce:GAGG scintillator. Opt. Mater. 2013, 35, 2480–2485. [Google Scholar] [CrossRef]
- Yanagida, T.; Fujimoto, Y.; Ito, T.; Uchiyama, K.; Mori, K. Development of X-ray-induced afterglow characterization system. Appl. Phys. Express 2014, 7, 062401. [Google Scholar] [CrossRef]
- Fukushima, H.; Akatsuka, M.; Kimura, H.; Onoda, D.; Shiratori, D.; Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Optical and Scintillation Properties of Nd-doped Strontium Yttrate Single Crystals. Sens. Mater. 2021, 33, 2235. [Google Scholar] [CrossRef]
- Chen, F.; Ju, M.; Kuang, X.; Yeung, Y. Insights into the Microstructure and Transition Mechanism for Nd3+-Doped Bi4Si3O12: A Promising Near-Infrared Laser Material. Inorg. Chem. 2018, 57, 4563–4570. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wang, X.; Hao, G.; Wang, L. Molten salt synthesis and luminescence properties of Bi4Si3O12 powders. J. Mater. Sci. Mater. Electron. 2013, 24, 814–818. [Google Scholar] [CrossRef]
- Okazaki, K.; Onoda, D.; Fukushima, H.; Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Characterization of scintillation properties of Nd-doped Bi4Ge3O12 single crystals with near-infrared luminescence. J. Mater. Sci. Mater. Electron. 2021, 32, 21677–21684. [Google Scholar] [CrossRef]
- Payziyev, S.; Sherniyozov, A.; Bakhramov, S.; Zikrillayev, K.; Khalikov, G.; Makhmudov, K.; Ismailov, M.; Payziyeva, D. Luminescence sensitization properties of Ce: Nd: YAG materials for solar pumped lasers. Opt. Commun. 2021, 499, 127283. [Google Scholar] [CrossRef]
- Kang, F.; Peng, M.; Zhang, Q.; Qiu, J. Abnormal Anti-Quenching and Controllable Multi-Transitions of Bi3+ Luminescence by Temperature in a Yellow-Emitting LuVO4: Bi3+ Phosphor for UV-Converted White LEDs. Chem.-A Eur. J. 2014, 20, 11522–11530. [Google Scholar] [CrossRef]
- Hreniak, D.; Fedyk, R.; Bednarkiewicz, A.; Stręk, W.; Łojkowski, W. Luminescence properties of Nd:YAG nanoceramics prepared by low temperature high pressure sintering method. Opt. Mater. 2007, 29, 1244–1251. [Google Scholar] [CrossRef]
- Zhu, X.; Xie, J.; Lin, D.; Guo, Z.; Xu, J.; Shi, Y.; Lei, F.; Wang, Y. Synthesis of BSO (Bi4Si3O12) scintillation thin film by sol–gel method. J. Alloys Compd. 2014, 582, 33–36. [Google Scholar] [CrossRef]
- Hua, J.; Kim, H.J.; Rooh, G.; Park, H.; Kim, S.; Cheon, J. Czochralski growth and scintillation properties of Bi4Si3O12 (BSO) single crystal. Nucl. Instrum. Methods Phys. Res. Sect. A 2011, 648, 73–76. [Google Scholar] [CrossRef]
- Santos, H.D.A.; Novais, S.M.V.; Jacinto, C. Optimizing the Nd:YF3 phosphor by impurities control in the synthesis procedure. J. Lumin. 2018, 201, 156–162. [Google Scholar] [CrossRef]
- Das, S.; Som, S.; Yang, C.; Lu, C.; Chen, Y.; Shy, H. Synthesis and characterization of high concentration Nd3+ doped YAG nanopowders for laser applications. In Proceedings of the 5th International Conference on Mechanical Engineering, Materials and Energy (5th ICMEME2016), Hong Kong, China, 10–11 December 2016; Atlantis Press: Paris, France, 2016. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ichiba, K.; Okazaki, K.; Takebuchi, Y.; Kato, T.; Nakauchi, D.; Kawaguchi, N.; Yanagida, T. X-ray-Induced Scintillation Properties of Nd-Doped Bi4Si3O12 Crystals in Visible and Near-Infrared Regions. Materials 2022, 15, 8784. https://doi.org/10.3390/ma15248784
Ichiba K, Okazaki K, Takebuchi Y, Kato T, Nakauchi D, Kawaguchi N, Yanagida T. X-ray-Induced Scintillation Properties of Nd-Doped Bi4Si3O12 Crystals in Visible and Near-Infrared Regions. Materials. 2022; 15(24):8784. https://doi.org/10.3390/ma15248784
Chicago/Turabian StyleIchiba, Kensei, Kai Okazaki, Yuma Takebuchi, Takumi Kato, Daisuke Nakauchi, Noriaki Kawaguchi, and Takayuki Yanagida. 2022. "X-ray-Induced Scintillation Properties of Nd-Doped Bi4Si3O12 Crystals in Visible and Near-Infrared Regions" Materials 15, no. 24: 8784. https://doi.org/10.3390/ma15248784
APA StyleIchiba, K., Okazaki, K., Takebuchi, Y., Kato, T., Nakauchi, D., Kawaguchi, N., & Yanagida, T. (2022). X-ray-Induced Scintillation Properties of Nd-Doped Bi4Si3O12 Crystals in Visible and Near-Infrared Regions. Materials, 15(24), 8784. https://doi.org/10.3390/ma15248784