Magnesium Silicate Binding Materials Formed from Heat-Treated Serpentine-Group Minerals and Aqueous Solutions: Structural Features, Acid-Neutralizing Capacity, and Strength Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Characteristics of Initial Materials
2.1.2. Preparation of Heat-Treated Serpentine Samples
2.2. Experimental Methods
2.2.1. Determination of Serpentines’ Acid Neutralization Capacity
- ANC—acid-neutralizing capacity, meq/g
- C0—hydrochloric acid solution initial concentration, mol/L
- C1—hydrochloric acid solution concentration after interaction with serpentine, mol/L
- m—serpentine sample portion, g
- V—volume of acid solution, L
- LOI—loss on ignition at 1000 °C, wt.%.
2.2.2. Study of the Active Serpentine Phase Formation
2.2.3. Study of the Hydration of Heat-Treated Serpentine Samples
2.2.4. Study of the Binding Properties of Heat-Treated Serpentine Samples
2.3. Physico-Chemical Methods
3. Results
3.1. Characteristics of Heat-Treated Serpentines
3.2. Interaction of Heat-Treated Serpentines with Water Vapors
3.3. The Hydration of Heat-Treated Serpentines
3.4. Compressive Strength of Binder—Molded Hydrated Heat-Treated Serpentines
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Walling, S.A.; Kinoshita, H.; Bernal, S.A.; Collier, N.C.; Provis, J.L. Structure and properties of binder gels formed in the system Mg(OH)2–SiO2–H2O for immobilisation of Magnox sludge. Dalton Trans. 2015, 44, 8126–8137. [Google Scholar] [CrossRef] [Green Version]
- Brew, D.R.M.; Glasser, F.P. Synthesis and characterisation of magnesium silicate hydrate gels. Cem. Concr. Res. 2005, 35, 85–98. [Google Scholar] [CrossRef]
- Tran, H.M.; Scott, A. Strength and workability of magnesium silicate hydrate binder systems. Constr. Build. Mater. 2017, 131, 526–535. [Google Scholar] [CrossRef]
- Dhakal, M.; Scott, A.N.; Shah, V.; Dhakal, R.P.; Clucas, D. Development of a MgO-metakaolin binder system. Constr. Build. Mater. 2021, 284, 122736. [Google Scholar] [CrossRef]
- Unluer, C.; Al-Tabbaa, A. The role of brucite, ground granulated blastfurnace slag, and magnesium silicates in the carbonation and performance of MgO cements. Constr. Build. Mater. 2015, 94, 629–643. [Google Scholar] [CrossRef] [Green Version]
- Budnikov, P.P.; Mchedlov-Petrosyan, O.P. Manifestation of hydraulic binding properties in dehydrated serpentinite. Dokl. AN SSSR 1950, 73, 539–540. (In Russian) [Google Scholar]
- Mchedlov-Petrosyan, O.P. Serpentinite Cement. Collection of Scientific Works on Chemistry and Technology of Silicates; State Publishing House of Literature on Building Materials: Moscow, Russia, 1956; pp. 153–166. (In Russian) [Google Scholar]
- Budnikov, P.P.; Khoroshavin, L.B.; Perepelitsin, V.A.; Ustyantsev, V.M.; Kosolapova, E.P. On the process of forsterite formation during dunite heating. J. Appl. Chem. 1967, 6, 1369–1370. (In Russian) [Google Scholar]
- Kremenetskaya, I.P.; Korytnaya, O.P.; Vasilyeva, T.N.; Belyaevskii, A.T.; Bubnova, T.P. Peculiar features of preparation and application of fractionated magnesia-silicate reagent. Russ. J. Appl. Chem. 2012, 85, 1493–1500. [Google Scholar] [CrossRef]
- Kremenetskaya, I.P.; Belyaevsky, A.T.; Vasilyeva, T.N.; Korytnaya, O.P.; Makarova, T.I. Amorphization of serpentine minerals in the technology of obtaining magnesia-silicate reagent for the immobilization of heavy metals. Chem. Sustain. Dev. 2010, 18, 41–49. (In Russian) [Google Scholar]
- Ivanova, T.K.; Kremenetskaya, I.P.; Novikov, A.I.; Semenov, V.G.; Nikolaev, A.G.; Slukovskaya, M.V. In situ control of thermal activation conditions by color for serpentines with a high iron content. Materials 2021, 14, 6731. [Google Scholar] [CrossRef]
- Slukovskaya, M.V.; Mosendz, I.A.; Ivanova, T.K.; Kremenetskaya, I.P.; Drogobuzhskaya, S.V.; Novikov, A.I.; Shirokaya, A.A.; Ivanova, L.A. Thermally activated serpentine materials as soil additives for copper and nickel immobilization in highly polluted peat. Environ. Geochem. Health 2022. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hitch, M. Mechanical activation of magnesium silicates for mineral carbonation, a review. Miner. Eng. 2018, 128, 69–83. [Google Scholar] [CrossRef]
- Huanga, P.; Lia, Z.; Chena, M.; Hua, H.; Leia, Z.; Zhanga, Q.; Yuanb, W. Mechanochemical activation of serpentine for recovering Cu (II) from wastewater. Appl. Clay Sci. 2017, 148, 1–7. [Google Scholar] [CrossRef]
- Rausis, K.; Ćwik, A.; Casanova, I. Insights into the direct carbonation of activated lizardite: The identification a poorly reactive amorphous Mg-rich silicate phase. Int. J. Greenh. Gas Control 2020, 100, 103114. [Google Scholar] [CrossRef]
- O’Connor, W.; Dahlin, D.C.; Nilsen, R.P.; Rush, G.E.; Walters, R.P.; Turner, P.C. CO2 Storage in Solid Form: A Study of Direct Mineral Carbonation; DOE/ARC-2000-011; Albany Research Center: Albany, OR, USA, 2000. [Google Scholar]
- Brigatti, M.F.; Galan, E.; Theng, B.K.G. Chapter 2 Structures and Mineralogy of Clay Minerals. Dev. Clay Sci. 2006, 1, 19–86. [Google Scholar] [CrossRef]
- Hariharan, S.B.; Werner, M.; Zingaretti, D.; Baciocchi, R.; Mazzotti, M. Dissolution of Activated Serpentine for Direct Flue-Gas Mineralization. Energy Procedia 2013, 37, 5938–5944. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Guo, L.; Chen, C.; Liu, Q.; Li, T.; Zhu, Y. The analysis of magnesium oxide hydration in three-phase reaction system. J. Solid State Chem. 2014, 213, 32–37. [Google Scholar] [CrossRef]
- Kremenetskaya, I.P.; Korytnaya, O.P.; Vasilyeva, T.N. Reagent for immobilization of heavy metals from serpentine-containing overburden rocks. Water Purif. Water Treat. Water Supply 2008, 4, 33–40. (In Russian) [Google Scholar]
- Breuil, C.D.; César-Pasquier, L.; Dipple, G.; Blais, J.-F.; Iliuta, M.C.; Mercier, G. Mineralogical Transformations of Heated Serpentine and Their Impact on Dissolution during Aqueous-Phase Mineral Carbonation Reaction in Flue Gas Conditions. Minerals 2019, 9, 680. [Google Scholar] [CrossRef] [Green Version]
- Jin, F.; Gu, K.; Al-Tabbaa, A. Strength and hydration properties of reactive MgO-activated ground granulated blastfurnace slag paste. Cem. Concr. Compos. 2015, 57, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Gualtieri, A.F.; Giacobbe, C.; Viti, C. The dehydroxylation of serpentine group minerals. Am. Mineral. 2012, 97, 666–680. [Google Scholar] [CrossRef]
- Zulumyan, N.H.; Isahakyan, A.R.; Beglaryan, H.A. Physicochemical characteristics and behavior of the serpentinous peridotite outcrops of San Jose and New Idria (California, USA) upon heating treatment. Epitoanyag 2010, 62, 50–54. [Google Scholar] [CrossRef]
- Guggenheim, S.; Zhan, W. Effect of temperature on the structures of lizardite-1T and lizardite-2H1. Can. Miner. 1998, 36, 1587–1594. [Google Scholar]
- Zulumyan, N.; Isahakyan, A.; Beglaryan, H.; Melikyan, S. A study of thermal decomposition of antigorite from dunite and lizardite from peridotite. J. Therm. Anal. Calorim. 2018, 131, 1201–1211. [Google Scholar] [CrossRef]
- Zulumyan, N.; Mirgorodski, A.; Isahakyan, A.; Beglaryan, H. The mechanism of decomposition of serpentines from peridotites on heating. J. Therm. Anal. Calorim. 2014, 115, 1003–1012. [Google Scholar] [CrossRef]
- Bernard, E.; Lothenbach, B.; Cau-Dit-Coumes, C.; Pochard, I.; Rentsch, D. Aluminum incorporation into magnesium silicate hydrate (M-S-H). Cem. Concr. Res. 2020, 128, 105931. [Google Scholar] [CrossRef]
- Bernard, E.; Dauzères, A.; Lothenbach, B. Magnesium and calcium silicate hydrates, Part II: Mg-exchange at the interface “low-pH” cement and magnesium environment studied in a C-S-H and M-S-H model system. Appl. Geochem. 2018, 89, 210–221. [Google Scholar] [CrossRef]
- Amaral, L.F.; Oliveira, I.R.; Salomão, R.; Frollini, E.; Pandolfelli, V.C. Temperature and common-ion effect on magnesium oxide (MgO) hydration. Ceram. Int. 2010, 36, 1047–1054. [Google Scholar] [CrossRef]
- Hay, R.; Dung, N.T.; Lesimple, A.; Unluer, C.; Celik, K. Mechanical and microstructural changes in reactive magnesium oxide cement-based concrete mixes subjected to high temperatures. Cem. Concr. Compos. 2021, 118, 103955. [Google Scholar] [CrossRef]
- Park, S.; Ma, J.; Yun, T.S.; Jeon, S.; Byeun, Y.; Kang, D.; Jang, J. Pore-scale swelling mechanism of magnesium oxide granules during hydration. Constr. Build. Mater. 2020, 251, 119101. [Google Scholar] [CrossRef]
- Tartaj, P.; Cerpa, A.; García-González, M.T.; Serna, C.J. Surface instability of serpentine in aqueous suspensions. J. Colloid Interface Sci. 2000, 231, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Bernard, E.; Lothenbach, B.; Rentsch, D.; Pochard, I.; Dauzères, A. Formation of magnesium silicate hydrates (M-S-H). Phys. Chem. Earth Parts A B C 2017, 99, 142–157. [Google Scholar] [CrossRef]
- Bernard, E.; Lothenbach, B.; Chlique, C.; Wyrzykowski, M.; Dauzères, A.; Pochard, I.; Cau-Dit-Coumes, C. Characterization of magnesium silicate hydrate (M-S-H). Cem. Concr. Res. 2019, 116, 309–330. [Google Scholar] [CrossRef]
- Nied, D.; Enemark-Rasmussen, K.; L’Hopital, E.; Skibsted, J.; Lothenbach, B. Properties of magnesium silicate hydrates (M-S-H). Cem. Concr. Res. 2016, 79, 323–332. [Google Scholar] [CrossRef]
- Bernard, E.; Lothenbach, B.; Cau-Dit-Coumes, C.; Chlique, C.; Dauzères, A.; Pochard, I. Magnesium and calcium silicate hydrates, Part I: Investigation of the possible magnesium incorporation in calcium silicate hydrate (C-S-H) and of the calcium in magnesium silicate hydrate (M-S-H). Appl. Geochem. 2018, 89, 229–242. [Google Scholar] [CrossRef]
- Benhelal, E.; Oliver, T.K.; Farhang, F.; Hook, J.M.; Rayson, M.S.; Brent, G.F.; Stockenhuber, M.; Kennedy, E.M. Structure of Silica Polymers and Reaction Mechanism for Formation of Silica-Rich Precipitated Phases in Direct Aqueous Carbon Mineralization. Ind. Eng. Chem. Res. 2020, 59, 6828–6839. [Google Scholar] [CrossRef]
- Benhelal, E.; Rashid, M.I.; Rayson, M.S.; Brent, G.F.; Oliver, T.; Stockenhuber, M.; Kennedy, E.M. Direct aqueous carbonation of heat activated serpentine: Discovery of undesirable side reactions reducing process efficiency. Appl. Energy 2019, 242, 1369–1382. [Google Scholar] [CrossRef]
- Chukhrov, F.M. (Ed.) Minerals: Handbook, 1st ed.; Nauka: Moscow, Russia, 1992. (In Russian) [Google Scholar]
- Evans, B.W.; Hattori, K.; Baronnet, A. Serpentinite: What, Why, Where? Elements 2013, 9, 99. [Google Scholar] [CrossRef]
- Wicks, F.J.; O’Hanley, D.S. Serpentine Minerals: Structures and Petrology. Hydrous Phyllosilicates; Bailey, S.W., Ed.; De Gruyter: Berlin, Germany, 2018. [Google Scholar] [CrossRef]
- Fedoročková, A.; Plešingerová, B.; Sučik, G.; Raschman, P.; Doráková, A. Characteristics of amorphous silica prepared from serpentinite using various acidifying agents. Int. J. Miner. Process. 2014, 130, 42. [Google Scholar] [CrossRef]
- Zulumyan, N.O.; Isaakyan, A.R.; Oganesyan, Z.G. A new promising method for processing of serpentinites. Russ. J. Appl. Chem. 2007, 80, 1020–1022. [Google Scholar] [CrossRef]
Sample | MgO | SiO2 | FeO | Fe2O3 | CaO | Al2O3 | LOI | Impurities |
---|---|---|---|---|---|---|---|---|
SAP | 36.0 | 40.7 | 5.7 | 2.2 | 0.3 | 0.2 | 11.8 | 3.1 |
SCH | 36.3 | 36.1 | 1.1 | 5.4 | 3.5 | 1.8 | 14.6 | 1.2 |
SLH | 44.9 | 39.7 | - | 0.8 | 1.4 | 0.4 | 12.6 | 0.2 |
SLK | 35.4 | 39.2 | - | 1.7 | 1.8 | 2.2 | 17.4 | 2.3 |
Sample | Initial | Heat-Treated, °C | |||||
---|---|---|---|---|---|---|---|
550 | 600 | 650 | 700 | 750 | 800 | ||
SAP | 1.5 | 1.7 | 4.8 | 7.3 | 7.7 | 4.5 | - |
SCH | 8.2 | 12.6 | 18.0 | 19.6 | 19.7 | 18.5 | 9.8 |
SLH | 5.3 | 12.1 | 16.9 | 18.6 | 18.9 | 18.4 | 5.3 |
SLK | 4.0 | - | 13.3 | 14.8 | 15.4 | 15.1 | 9.8 |
Phase | SLH | SLK | |||||
---|---|---|---|---|---|---|---|
Initial | Heat Treated | Hydrated Heat-Treated | Initial | Heat Treated | Hydrated Heat-Treated | ||
Crystalline | serpentine mineral | 75.2 | 4.8 | 5.6 | 44.8 | 13.9 | 20.1 |
other minerals | 8.9 | 42.2 | 33.9 | 39.4 | 30.6 | 31.4 | |
Amorphous | 15.9 | 53.0 | 60.5 | 15.8 | 55.5 | 48.5 |
Sample | Components, (wt.%) | Acid-Neutralizing Capacity | Leaching HCl (8 wt.%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
LOI | MgO | SiO2 | Theoretical, meq/g | Experimental, meq/g | Activation Degree, % | MgO, g/100 g | SiO2, g/100 g | Leaching Degree, % | Mg/Si mol | ||
MgO | SiO | ||||||||||
SAP | 2.8 | 39.7 | 44.9 | 20.4 | 7.7 | 38 | 32.6 | 12.6 | 82 | 28 | 3.9 |
SCH | 7.4 | 39.5 | 42.6 | 21.3 | 19.6 | 92 | 39.0 | 11.4 | 98 | 26 | 5.1 |
SLH | 8.0 | 47.9 | 42.5 | 26.0 | 18.6 | 72 | 40.0 | 14.5 | 84 | 34 | 4.1 |
Sample | Phase B, wt.% | Phase S, wt.% | Phase B/(phase B + phase S), % | |
---|---|---|---|---|
SAP | Initial | 1.1 | 12.8 | 8.0 |
Heat-treated | 0.7 | 3.0 | 18.9 | |
Hydrated heat-treated | 3.8 | 7.3 | 34.4 | |
SCH | Initial | 4.0 | 10.0 | 28.9 |
Heat-treated | 1.1 | 3.7 | 22.1 | |
Hydrated heat-treated | 6.3 | 2.9 | 68.4 | |
SLH | Initial | 2.3 | 10.6 | 17.8 |
Heat-treated | 1.7 | 4.6 | 27.0 | |
Hydrated heat-treated | 4.2 | 4.2 | 50.0 | |
SLK | Initial | 3.4 | 9.1 | 26.9 |
Heat-treated | 0.7 | 6.5 | 9.1 | |
Hydrated heat-treated | 4.8 | 7.1 | 40.1 |
Sample | Compressive Strength Results, MPa | |||
---|---|---|---|---|
7 Days | 28 Days | 180 Days | 360 Days | |
SAP | 2.0 | 2.4 | 2.9 | 3.0 |
SCH | 2.2 | 3.5 | 6.6 | 7.9 |
SLH | 0.5 | 0.7 | 1.1 | 1.1 |
SLK | 0.5 | 0.5 | 0.5 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, T.K.; Kremenetskaya, I.P.; Marchevskaya, V.V.; Slukovskaya, M.V.; Drogobuzhskaya, S.V. Magnesium Silicate Binding Materials Formed from Heat-Treated Serpentine-Group Minerals and Aqueous Solutions: Structural Features, Acid-Neutralizing Capacity, and Strength Properties. Materials 2022, 15, 8785. https://doi.org/10.3390/ma15248785
Ivanova TK, Kremenetskaya IP, Marchevskaya VV, Slukovskaya MV, Drogobuzhskaya SV. Magnesium Silicate Binding Materials Formed from Heat-Treated Serpentine-Group Minerals and Aqueous Solutions: Structural Features, Acid-Neutralizing Capacity, and Strength Properties. Materials. 2022; 15(24):8785. https://doi.org/10.3390/ma15248785
Chicago/Turabian StyleIvanova, Tatiana K., Irina P. Kremenetskaya, Valentina V. Marchevskaya, Marina V. Slukovskaya, and Svetlana V. Drogobuzhskaya. 2022. "Magnesium Silicate Binding Materials Formed from Heat-Treated Serpentine-Group Minerals and Aqueous Solutions: Structural Features, Acid-Neutralizing Capacity, and Strength Properties" Materials 15, no. 24: 8785. https://doi.org/10.3390/ma15248785
APA StyleIvanova, T. K., Kremenetskaya, I. P., Marchevskaya, V. V., Slukovskaya, M. V., & Drogobuzhskaya, S. V. (2022). Magnesium Silicate Binding Materials Formed from Heat-Treated Serpentine-Group Minerals and Aqueous Solutions: Structural Features, Acid-Neutralizing Capacity, and Strength Properties. Materials, 15(24), 8785. https://doi.org/10.3390/ma15248785