Optimization of Processing Steps for Superior Functional Properties of (Ba, Ca)(Zr, Ti)O3 Ceramics
Abstract
:1. Introduction
2. Sample Preparation and Experimental Details
3. Results and Discussions
3.1. Structural and Microstructural Analysis of Ceramics
3.2. Comparative Analysis of Low-Field Dielectric Properties
3.3. High Field Properties (Ferroelectricity, Tunability, and Piezoelectric Effect)
3.4. Structural Modifications Induced by Poling
3.5. Piezoelectric Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fu, H.X.; Cohen, R.E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 2000, 403, 281–283. [Google Scholar] [CrossRef] [PubMed]
- Ahart, M.; Somayazulu, M.; Cohen, R.E.; Ganesh, P.; Dera, P.; Mao, H.-K.; Hemley, R.J.; Ren, Y.; Liermann, P.; Wu, Z. Origin of morphotropic phase boundaries in ferroelectrics. Nature 2008, 451, 545–549. [Google Scholar] [CrossRef]
- Liu, W.; Ren, X. Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 2009, 103, 257602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keeble, D.S.; Benabdallah, F.; Thomas, P.A.; Maglione, M.; Kreisel, J. Revised structural phase diagram of (Ba0.7Ca0.3TiO3)–(BaZr0.2Ti0.8O3). Appl. Phys. Lett. 2013, 102, 092903. [Google Scholar] [CrossRef]
- Cox, D.E.; Noheda, B.; Shirane, G.; Uesu, Y.; Fujishiro, K.; Yamada, Y. Universal phase diagram for high-piezoelectric perovskite systems. Appl. Phys. Lett. 2001, 79, 400. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.K.; Pandey, D.; Singh, A.P. Effect of phase coexistence at morphotropic phase boundary on the properties of Pb(ZrxTi1−x)O3 ceramics. Appl. Phys. Lett. 1996, 69, 1707. [Google Scholar] [CrossRef]
- Gao, J.; Dai, Y.; Hu, X.; Ke, X.; Zhong, L.; Li, S.; Zhang, L.; Wang, Y.; Wang, D.; Wang, Y.; et al. Phase transition behaviours near the triple point for Pb-free (1− x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoceramics. Europhys. Lett. 2016, 115, 37001. [Google Scholar] [CrossRef]
- Yan, X.; Zheng, M.; Gao, X.; Zhu, M.; Hou, Y. High-performance lead-free ferroelectric BZT–BCT and its application in energy fields. J. Mater. Chem. C 2020, 8, 13530–13556. [Google Scholar] [CrossRef]
- Dash, S.; Pradhan, D.K.; Kumari, S.; Ravikant, M.; Rahaman, M.; Cazorla, C.; Brajesh, K.; Kumar, A.; Thomas, R.; Rack, P.D.; et al. Enhanced ferroelectric and piezoelectric properties of BCT-BZT at the morphotropic phase boundary driven by the coexistence of phases with different symmetries. Phys. Rev. B 2021, 104, 224105. [Google Scholar] [CrossRef]
- Bai, Y.; Matousek, A.; Tofel, P.; Bijalwan, V.; Nan, B.; Hughes, H.; Button, T.W. (Ba, Ca)(Zr, Ti)O3 lead- free piezoelectric ceramics- The critical role of processing on properties. J. Eur. Ceram. Soc. 2015, 35, 3445–3456. [Google Scholar] [CrossRef]
- Ji, X.; Wang, C.; Li, S.; Zhang, S.; Tu, R.; Shen, Q.; Shi, J.; Zhang, L. Structural and electrical properties of BCTZ ceramics synthesized by sol-gel process. J. Mater. Sci. Mater. Electron. 2018, 29, 7592–7599. [Google Scholar] [CrossRef]
- Bharathi, P.; Varma, K.B.R. Grain and the concomitant ferroelectric domain size dependent physical properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics fabricated using powders derived from oxalate precursor route. J. Appl. Phys. 2014, 116, 164107. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, M.; Chen, Z.; Fang, B.; Ding, J.; Zhao, X.; Xu, H.; Luo, H. Structure and electrical properties of Li-doped BaTiO3–CaTiO3–BaZrO3 lead-free ceramics prepared by citrate method. J. Alloys Compd. 2014, 613, 219–225. [Google Scholar] [CrossRef]
- Hanani, Z.; Mezzane, D.; Amjoud, M.; Gagou, Y.; Hoummada, K.; Perrin, C.; Razumnaya, A.G.; Kutnjak, Z.; Bouzina, A.M.; Marssi, M.E.; et al. Structural, dielectric, and ferroelectric properties of lead- free BCTZ ceramics elaborated by low temperature hydrothermal processing. J. Mater. Sci. Mater. Electron. 2020, 31, 10096–10104. [Google Scholar] [CrossRef]
- Ji, X.; Wang, C.; Harumoto, T.; Zhang, S.; Tu, R.; Shen, Q.; Shi, J. Structure and electrical properties of BCTZ ceramics derived from microwave-assisted sol-gel-hydrothermal synthesized powders. Sci. Rep. 2020, 10, 20352. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Chen, D.; Li, P.; Shen, B.; Zhai, J.; Ji, Z. Enhanced electromechanical properties in <00l>-textured Ba0.85Ca0.15Zr0.1Ti0.9 O3 lead-free piezoceramics. Ceram. Int. 2016, 42, 3429–3436. [Google Scholar]
- Mishra, P.; Sonia, P.; Kumar, P. Effect of sintering temperature on dielectric, piezoelectric and ferroelectric properties of BZT–BCT 50/50 ceramics. J. Alloys Compd. 2012, 545, 210–215. [Google Scholar] [CrossRef]
- Yan, X.; Peng, B. Microstructure and electrical properties of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J. Mater. Sci. Mater. Electron 2015, 26, 9649–9653. [Google Scholar] [CrossRef]
- Ye, S.; Fuh, J.; Lu, L.; Chang, Y.; Yang, J.R. Structure and properties of hot-pressed lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoelectric ceramics. RSC Adv. 2013, 3, 206933. [Google Scholar] [CrossRef]
- Guo, H.Z.; Voas, B.K.; Zhang, S.J.; Zhou, C.; Ren, X.B.; Beckman, S.P.; Tan, X.L. Polarization alignment, phase transition, and piezoelectricity development in polycrystalline 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3. Phys. Rev. B 2014, 90, 014103. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Cai, W.; Li, Q.; Gao, R.; Chen, G.; Deng, X.; Wang, Z.; Cao, X.; Fu, C. Enhanced piezoelectric response of (Ba,Ca)(Ti,Zr)O3 ceramics by superlarge grain size and construction of phase boundary. J. Alloys. Compd. 2019, 794, 542–552. [Google Scholar] [CrossRef]
- Wu, J.; Xiao, D.; Wu, W.; Chen, Q.; Zhu, J.; Yang, Z.; Wang, J. Composition and poling condition-induced electrical behavior of (Ba0.85Ca0.15)(Ti1− xZrx)O3 lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 2012, 32, 891–898. [Google Scholar] [CrossRef]
- Ciuchi, I.V.; Chung, C.C.; Fancher, C.M.; Guerrier, J.; Forrester, J.S.; Jones, J.L.; Mitoseriu, L.; Galassi, C. Field-induced antiferroelectric to ferroelectric transitions in (Pb1–xLax)(Zr0.90Ti0.10)1–x/4O3 investigated by in situ X-ray diffraction. J. Eur. Ceram. Soc. 2017, 37, 4631–4636. [Google Scholar] [CrossRef]
- Horchidan, N.; Padurariu, L.; Ciomaga, C.E.; Curecheriu, L.; Doroftei, F.; Tufescu, F.; Mitoseriu, L. Room temperature phase superposition as origin of enhanced functional properties in BaTiO3-based ceramics. J. Eur. Ceram. Soc. 2020, 40, 1258–1268. [Google Scholar] [CrossRef]
- Tufescu, F.M.; Curecheriu, L.P.; Ianculescu, A.; Ciomaga, C.E.; Mitoseriu, L. High voltage tunability measurements, of the BaZrxTi1-x O3 ferroelectric ceramics. J. Optoel. Adv. Mater. 2008, 10, 1894–1897. [Google Scholar]
- Haugen, A.; Forrester, J.S.; Damjanovic, D.; Li, B.; Bowman, K.J.; Jones, J.L. Structure and phase transitions in 0.5(Ba0.7Ca0.3TiO3)-0.5(Ba, Zr0.2Ti0.8O3) from −100 °C to 150 °C. J. Appl. Phys. 2013, 113, 014103. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, M.; Wang, L.; Zhou, C.; Zhang, Z.; Yao, Y.; Zhang, L.; Xue, D.; Lou, X.; Ren, X. Phase transitions and the piezoelectricity around morphotropic phase boundary in Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 lead-free solid solution. Appl. Phys. Lett. 2014, 105, 162908. [Google Scholar] [CrossRef]
- Tian, Y.; Wei, L.; Chao, X.; Liu, Z.; Yang, Z. Phase Transition Behavior and Large Piezoelectricity Near the Morphotropic Phase Boundary of Lead-Free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Ceramics. J. Am. Ceram. Soc. 2012, 96, 496–502. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, B.P.; Yang, W.G.; Guo, D. Phase structure and nano-domain in high performance of BaTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 2012, 32, 1059–1066. [Google Scholar] [CrossRef]
- Picht, G.; Kungl, H.; Baurer, M.; Hoffmann, M.J. High electric field induced strain in solid-state route processed barium titanate ceramics. Funct. Mater. Lett. 2010, 3, 59–64. [Google Scholar] [CrossRef]
- da Silva, L.L.; Lee, K.Y.; Petrick, S.; Etter, M.; Schokel, A.; Chaves, C.G.; da Silva, N.O.; Lalitha, K.V.; Picht, G.; Hoffmann, M.J.; et al. Uncovering the symmetry of the induced ferroelectric phase transformation in polycrystalline barium titanate. J. Appl. Phys. 2021, 130, 234101. [Google Scholar] [CrossRef]
- Lukacs, V.A.; Airimioaei, M.; Padurariu, L.; Curecheriu, L.P.; Ciomaga, C.E.; Bencan, A.; Drazic, G.; Avakian, M.; Jones, J.L.; Stoian, G.; et al. Phase coexistence and grain size effects on the functional properties of BaTiO3 ceramics. J. Eur. Ceram. Soc. 2022, 42, 2230–2247. [Google Scholar] [CrossRef]
- Hammer, M.; Monty, C.; Endriss, A.; Hoffmann, M.J. Correlation between surface texture and chemical composition in undoped, hard, and soft piezoelectric PZT ceramics. J. Am. Ceram. Soc. 1998, 81, 721–724. [Google Scholar] [CrossRef]
- Jones, J.L.; Slamovich, E.B.; Bowman, K.J. Domain texture distributions in tetragonal lead zirconate titanate by X-ray and neutron diffraction. J. Appl. Phys. 2005, 97, 034113. [Google Scholar] [CrossRef]
- Khanal, G.P.; Kim, S.; Fujii, I.; Ueno, S.; Moriyoshi, C.; Kuroiwa, Y.; Wada, S. Effect of thermal annealing on crystal structures and electrical properties in BaTiO3 ceramics. J. Appl. Phys. 2018, 124, 034102. [Google Scholar] [CrossRef]
- Subbarao, E.C.; McQuarrie, M.C.; Buessem, W.R. Domain effects in polycrystalline barium titanate. J. Appl. Phys. 1957, 28, 1194–1200. [Google Scholar] [CrossRef]
- Lee, B.W.; Auh, K.H. Effect of grain size and mechanical processing on the dielectric properties of BaTiO3. J. Mater. Res. 1995, 10, 1418–1423. [Google Scholar] [CrossRef]
- Li, X.; Shih, W.Y.; Vartuli, J.S.; Milius, D.L.; Aksay, I.A.; Shih, W.H. Effect of transverse tensile stress on the electric-field-induced domain reorientation in soft PZT: In Situ XRD study. J. Am. Ceram. Soc. 2002, 85, 844–850. [Google Scholar] [CrossRef] [Green Version]
- Buatip, N.; Dhanunjaya, M.; Amonpattaratkit, P.; Pomyai, P.; Sonklin, T.; Reichmann, K.; Janphaung, P.; Pojprapai, S. Comparison of conventional and reactive sintering techniques for Lead–Free BCZT ferroelectric ceramics. Rad. Phys. Chem. 2020, 172, 108770. [Google Scholar] [CrossRef]
- Sahoo, G.K.; Mazumder, R. Low temperature synthesis of Ba(Zr0.2Ti0.8)O-3–0.5(Ba0.7Ca0.3)TiO3 nanopowders by solution-based auto combustion method. J. Mater. Sci. Electron. 2014, 25, 3515–3519. [Google Scholar] [CrossRef]
- Padurariu, L.; Curecheriu, L.P.; Ciomaga, C.E.; Airimioaei, M.; Horchidan, N.; Cioclea, C.; Lukacs, V.A.; Sirbu, R.S.; Mitoseriu, L. Modifications of structural, dielectric and ferroelectric properties induced by porosity in BaTiO3 ceramics with phase coexistence. J. Alloys Compd. 2021, 889, 161699. [Google Scholar] [CrossRef]
- Roscow, J.I.; Li, Y.; Hall, D.A. Residual stress and domain switching in freeze cast porous barium titanate. J. Eur. Ceram. Soc. 2022, 42, 1434–1444. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, L.; Xue, D.; Kimoto, T.; Song, M.; Zhong, L.; Ren, X. Symmetry determination on Pb-free piezoceramic 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 using convergent beam electron diffraction method. J. Appl. Phys. 2014, 115, 054108e1-5. [Google Scholar] [CrossRef]
- Li, W.; Xu, Z.; Chu, R.; Fu, P.; Zang, G. Polymorphic phase transition and piezoelectric properties of (Ba1-xCax)(Ti0.9Zr0.1)O3 lead-free ceramics. Phys. B 2010, 405, 4513–4516. [Google Scholar] [CrossRef]
- Wang, P.; Li, Y.; Lu, Y. Enhanced piezoelectric properties of Ba0.85Ca0.15Zr0.10Ti0.90O3 lead-free ceramics by optimizing calcination and sintering temperature. J. Eur. Ceram Soc. 2011, 31, 2005–2012. [Google Scholar] [CrossRef]
- Curecheriu, L.P.; Ciomaga, C.E.; Musteata, V.; Canu, G.; Buscaglia, V.; Mitoseriu, L. Diffuse phase transition and high electric field properties of BaCeyTi1-yO3 relaxor ferroelectric ceramics. Ceram. Internat. 2016, 42, 11085–11092. [Google Scholar] [CrossRef]
- Hanani, Z.; Merselmiz, S.; Danime, A.; Stein, N.; Mezzane, D.; Amjoud, M.; Lahcini, M.; Gagou, Y.; Spreitzer, M.; Vengust, D.; et al. Enhanced dielectric and electrocaloric properties in lead-free rod-like BCTZ ceramics. J. Adv. Ceram. 2020, 9, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Kaddoussi, H.; Lahmar, A.; Gagou, Y.; Manoun, B.; Chotard, J.N.; Dellis, J.-L.; Kutnjak, Z.; Khemakhem, H.; Elouadi, B.; El Marssi, M. Sequence of structural transitions and electrocaloric properties in (Ba1-xCax)(Zr0.1Ti0.9)O3 ceramics. J. Alloys Compd. 2017, 713, 164–179. [Google Scholar] [CrossRef]
- Gheorghiu, F.; Padurariu, L.; Airimioaei, M.; Curecheriu, L.; Ciomaga, C.; Padurariu, C.; Galassi, C.; Mitoseriu, L. Porosity-dependent properties of Nb-doped Pb(Zr,Ti)O3 ceramics. J. Am. Ceram. Soc. 2016, 100, 647–658. [Google Scholar] [CrossRef]
- Moya, X.; Kar-Narayan, S.; Mathur, N.D. Caloric materials near ferroic phase transitions. Nat. Mater. 2014, 13, 439–450. [Google Scholar] [CrossRef]
- Hanani, Z.; Mezzane, D.; Amjoud, M.; Razumnaya, A.G.; Fourcade, S.; Gagou, Y.; Hoummada, K.; El Marssi, M.; Gouné, M. Phase transitions, energy storage performances and electrocaloric effect of the lead-free Ba0.85Ca0.15Zr0.10Ti0.90O3 ceramic relaxor. J. Mater. Sci. Mater. Electron. 2019, 30, 6430–6438. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Sharma, P.; Vaish, R. Enhanced electrocaloric effect in Ba0.85Ca0.15Zr0.1Ti0.9–xSnxO3 ferroelectric ceramics. Phase. Transit. 2016, 89, 1062–1073. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, M.; Roscow, J.; Bowen, C.R. Dielectric and piezoelectric properties of porous lead-free 0.5Ba(Ca0.8Zr0.2)O3–0.5(Ba0.7Ca0.3)TiO3 ceramics. Mater. Res. Bull. 2019, 112, 426–431. [Google Scholar] [CrossRef]
- Zhang, Y.; Roscow, J.; Lewis, R.; Khanbareh, H.; Topolov, V.Y.; Xie, M.; Bowen, C.R. Understanding the effect of porosity on the polarisation-field response of ferroelectric materials. Acta Mater. 2018, 154, 100–112. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Liu, S.; Xiao, Z.; Yuan, X.; Zhai, D.; Zhou, K.; Zhang, D.; Zhang, G.; Bowen, C.; Zhang, Y. Evaluation of the pore morphologies for piezoelectric energy harvesting application. Ceram. Internat. 2022, 48, 5017–5025. [Google Scholar] [CrossRef]
- Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G.A., Jr.; Rodel, J. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Appl. Phys. Rev. 2017, 4, 041305. [Google Scholar] [CrossRef] [Green Version]
- Roscow, J.I.; Pearce, H.; Khanbareh, H.; Kar-Narayan, S.; Bowen, C.R. Modified energy harvesting figures of merit for stress-and strain-driven piezoelectric systems. Eur. Phys. J. Spec. Top. 2019, 228, 1537–1554. [Google Scholar] [CrossRef]
- Zhang, L.; Du, H.; Wei, X.; Liu, G.; Yan, Y. A strategy for obtaining high electrostrictive properties and its application in barium stannate titanate lead-free ferroelectrics. Ceram. Int. 2018, 44, 21816–21824. [Google Scholar]
Samples | εm | Tm (°C) | T0 (°C) | C × 105 (°C) | η | Prem (µC/cm2) for Eappl = 15 kV/cm | Ec (kV/cm) for Eappl = 15 kV/cm | Relative Density (r.d.) | |
---|---|---|---|---|---|---|---|---|---|
1. | BCTZ1 | 6590 | 97.5 | 83 | 1.32 | 1.61 | 3.6 | 3 | 75% |
2. | BCTZ2 | 10,620 | 92.5 | 92 | 1.10 | 1.60 | 4.35 | 2.4 | 76% |
3. | BCTZ3 | 10,564 | 92.5 | 87 | 1.60 | 1.55 | 9 | 2.4 | 96% |
4. | BCTZ4 | 11,400 | 87.5 | 88 | 1.46 | 1.66 | 10.1 | 2.3 | 95% |
5. | BCTZ5 | 12,120 | 102.5 | 97 | 1.64 | 1.59 | 7.5 | 2.1 | 97% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciomaga, C.E.; Curecheriu, L.P.; Lukacs, V.A.; Horchidan, N.; Doroftei, F.; Valois, R.; Lheureux, M.; Chambrier, M.H.; Mitoseriu, L. Optimization of Processing Steps for Superior Functional Properties of (Ba, Ca)(Zr, Ti)O3 Ceramics. Materials 2022, 15, 8809. https://doi.org/10.3390/ma15248809
Ciomaga CE, Curecheriu LP, Lukacs VA, Horchidan N, Doroftei F, Valois R, Lheureux M, Chambrier MH, Mitoseriu L. Optimization of Processing Steps for Superior Functional Properties of (Ba, Ca)(Zr, Ti)O3 Ceramics. Materials. 2022; 15(24):8809. https://doi.org/10.3390/ma15248809
Chicago/Turabian StyleCiomaga, Cristina Elena, Lavinia P. Curecheriu, Vlad Alexandru Lukacs, Nadejda Horchidan, Florica Doroftei, Renaud Valois, Megane Lheureux, Marie Hélène Chambrier, and Liliana Mitoseriu. 2022. "Optimization of Processing Steps for Superior Functional Properties of (Ba, Ca)(Zr, Ti)O3 Ceramics" Materials 15, no. 24: 8809. https://doi.org/10.3390/ma15248809
APA StyleCiomaga, C. E., Curecheriu, L. P., Lukacs, V. A., Horchidan, N., Doroftei, F., Valois, R., Lheureux, M., Chambrier, M. H., & Mitoseriu, L. (2022). Optimization of Processing Steps for Superior Functional Properties of (Ba, Ca)(Zr, Ti)O3 Ceramics. Materials, 15(24), 8809. https://doi.org/10.3390/ma15248809