Fabrication of SiCN(O) Aerogel Composites with Low Thermal Conductivity by Wrapping Mesoporous Aerogel Structures over Mullite Fibers
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of SiCN(O) Ceramic Aerogel
2.2. Preparation of SiCN(O) Ceramic Aerogel Composite
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, B.; Wang, Y.; Lei, Y.; Wu, N.; Gou, Y.; Han, C.; Fang, D. Hierarchically porous SiC ultrathin fibers mat with enhanced mass transport, amphipathic property and high-temperature erosion resistance. J. Mater. Chem. A 2014, 2, 20873–20881. [Google Scholar] [CrossRef]
- Su, L.F.; Miao, L.; Tanemura, S.; Xu, G. Low-cost and fast synthesis of nanoporous silica cryogels for thermal insulation applications. Sci. Technol. Adv. Mater. 2012, 13, 035003. [Google Scholar] [CrossRef] [PubMed]
- Fedyukhin, A.V.; Strogonov, K.V.; Soloveva, O.V.; Solovev, S.A.; Akhmetova, I.G.; Berardi, U.; Zaitsev, M.D.; Grigorev, D.V. Aerogel Product Applications for High-Temperature Thermal Insulation. Energies 2022, 15, 7792. [Google Scholar] [CrossRef]
- Sung, I.K.; Christian; Mitchell, M.; Kim, D.P.; Kenis, P.J.A. Tailored macroporous SiCN and SiC structures for high-temperature fuel reforming. Adv. Funct. Mater. 2005, 15, 1336–1342. [Google Scholar] [CrossRef]
- Soubaihi, R.M.A.; Saoud, K.M.; Dutta, J. Comparative investigation of structure and operating parameters on the performance and reaction dynamic of CO conversion on silica aerogel and fumed-silica-supported Pd catalysts. Surf. Interfaces 2022, 29, 101776. [Google Scholar] [CrossRef]
- Yu, H.; Oh, S.; Han, Y.; Lee, S.; Jeong, H.S.; Hong, H.-J. Modified cellulose nanofibril aerogel: Tunable catalyst support for treatment of 4-Nitrophenol from wastewater. Chemosphere 2021, 285, 131448. [Google Scholar] [CrossRef]
- Yahya, E.B.; Jummaat, F.; Amirul, A.A.; Adnan, A.S.; Olaiya, N.G.; Abdullah, C.K.; Rizal, S.; Mohamad Haafiz, M.K.; Abdul Khalil, H.P.S. A Review on Revolutionary Natural Biopolymer-Based Aerogels for Antibacterial Delivery. Antibiotics 2020, 9, 648. [Google Scholar] [CrossRef]
- Mariana, M.; HPS, A.K.; Yahya, E.B.; Olaiya, N.G.; Alfatah, T.; Suriani, A.B.; Mohamed, A. Recent trends and future prospects of nanostructured aerogels in water treatment applications. J. Water Process Eng. 2022, 45, 102481. [Google Scholar] [CrossRef]
- Biranje, P.M.; Prakash, J.; Alexander, R.; Kaushal, A.; Patwardhan, A.W.; Joshi, J.B.; Dasgupta, K. Ultra-fast detection and monitoring of cancerous volatile organic compounds in environment using graphene oxide modified CNT aerogel hybrid gas sensor. Talanta Open 2022, 6, 100148. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, H.; Liu, J.; Xiao, L.; Ao, Y.; Li, M. High porosity fluorescent aerogel with new molecular probes for formaldehyde gas sensors. Microporous Mesoporous Mater. 2021, 325, 111208. [Google Scholar] [CrossRef]
- Maleki, H.; Durães, L.; Portugal, A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J. Non-Cryst. Solid. 2014, 385, 55–74. [Google Scholar] [CrossRef] [Green Version]
- Randall, J.P.; Meador, M.A.B.; Jana, S.C. Tailoring Mechanical Properties of Aerogels for Aerospace Applications. ACS Appl. Mater. Interfaces 2011, 3, 613–626. [Google Scholar] [CrossRef]
- Santhosh, B.; Vakifahmetoglu, C.; Ionescu, E.; Reitz, A.; Albert, B.; Sorarù, G.D. Processing and thermal characterization of polymer derived SiCN(O) and SiOC reticulated foams. Ceram. Int. 2020, 46, 5594–5601. [Google Scholar] [CrossRef]
- Nguyen, V.L.; Zera, E.; Perolo, A.; Campostrini, R.; Li, W.; Sorarù, G.D. Synthesis and characterization of polymer-derived SiCN aerogel. J. Eur. Ceram. Soc. 2015, 35, 3295–3302. [Google Scholar] [CrossRef]
- Zhao, W.; Shao, G.; Han, S.; Cai, C.; Liu, X.; Sun, M.; Wang, H.; Li, X.; Zhang, R.; An, L. Facile preparation of ultralight polymer-derived Si OCN ceramic aerogels with hierarchical pore structure. J. Am. Ceram. Soc. 2019, 102, 2316–2324. [Google Scholar] [CrossRef]
- Cheng, E.J.; Sakamoto, J.; Salvador, J.; Wang, H.; Maloney, R.; Thompson, T. Cast-in-place, ambiently-dried, silica-based, high-temperature insulation. Acta Mater. 2017, 127, 450–462. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Yalcin, B.; Nguyen, B.N.; Meador, M.A.B.; Cakmak, M. Flexible Nanofiber-Reinforced Aerogel (Xerogel) Synthesis, Manufacture, and Characterization. Acs Appl. Mater. Interfaces 2009, 1, 2491–2501. [Google Scholar] [CrossRef]
- Du, D.; Jiang, Y.; Feng, J.; Li, L.; Feng, J. Facile synthesis of silica aerogel composites via ambient-pressure drying without surface modification or solvent exchange. Vacuum 2020, 173, 109117. [Google Scholar] [CrossRef]
- Li, K.; Veith, G.M.; Lamm, M.E.; Stevens, A.; Lamichhane, T.; Guo, W.; Mahurin, S.M.; Biswas, K.; Hun, D.; Wang, H.; et al. Hermetically sealed porous-wall hollow microspheres enabled by monolithic glass coatings: Potential for thermal insulation applications. Vacuum 2022, 195, 110667. [Google Scholar] [CrossRef]
- Schneider, H.; Schreuer, J.; Hildmann, B. Structure and properties of mullite—A review. J. Eur. Ceram. Soc. 2008, 28, 329–344. [Google Scholar] [CrossRef]
- He, J.; Li, X.; Su, D.; Ji, H.; Qiao, Y. High-strength mullite fibers reinforced ZrO2–SiO2 aerogels fabricated by rapid gel method. J. Mater. Sci. 2015, 50, 7488–7494. [Google Scholar] [CrossRef]
- Brunauer, G.; Boysen, H.; Frey, F.; Hansen, T.; Kriven, W. High temperature crystal structure of a 3:2 mullite from neutron diffraction data. Z. Krist. 2001, 216, 284–290. [Google Scholar] [CrossRef]
- Xiao, Y.; Li, L.; Liu, F.; Zhang, S.; Feng, J.; Jiang, Y.; Feng, J. Compressible, Flame-Resistant and Thermally Insulating Fiber-Reinforced Polybenzoxazine Aerogel Composites. Materials 2020, 13, 2809. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Yun, S.; Li, Y.; Chen, Z.; Cao, C.; Gao, Y. Facile synthesis of highly flexible polymethylsilsesquioxane aerogel monoliths with low density, low thermal conductivity and superhydrophobicity. Vacuum 2021, 183, 109825. [Google Scholar] [CrossRef]
- Jelle, B.P.; Mofid, S.A.; Gao, T.; Grandcolas, M.; Sletnes, M.; Sagvolden, E. Iop Nano insulation materials exploiting the Knudsen effect. In Proceedings of 6th Global Conference on Polymer and Composite Materials (PCM), Bangkok, Thailand, 8–11 July 2019. [Google Scholar]
- Hu, F.; Wu, S.; Sun, Y. Hollow-Structured Materials for Thermal Insulation. Adv. Mater. 2019, 31. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Feng, J.; Feng, J.; Jiang, Y. Efficient gaseous thermal insulation aerogels from 2-dimension nitrogen-doped graphene sheets. Int. J. Heat Mass Transf. 2017, 109, 1026–1030. [Google Scholar] [CrossRef]
- Zeng, S.Q.; Hunt, A.; Greif, R. Geometric Structure and Thermal Conductivity of Porous Medium Silica Aerogel. J. Heat Transf. 1995, 117, 1055–1058. [Google Scholar] [CrossRef]
- Bi, C.; Tang, G.H.; Tao, W.Q. Prediction of the gaseous thermal conductivity in aerogels with non-uniform pore-size distribution. J. Non-Cryst. Solid. 2012, 358, 3124–3128. [Google Scholar] [CrossRef]
- Tokunaga, T.K. Porous media gas diffusivity from a free path distribution model. J. Chem. Phys. 1985, 82, 5298–5299. [Google Scholar] [CrossRef]
- Reichenauer, G.; Heinemann, U.; Ebert, H.P. Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity. Colloids Surf. A-Physicochem. Eng. Asp. 2007, 300, 204–210. [Google Scholar] [CrossRef]
- Zambotti, A.; Biesuz, M.; Campostrini, R.; Carturan, S.M.; Speranza, G.; Ceccato, R.; Parrino, F.; Sorarù, G.D. Synthesis and thermal evolution of polysilazane-derived SiCN(O) aerogels with variable C content stable at 1600 °C. Ceram. Int. 2021, 47, 8035–8043. [Google Scholar] [CrossRef]
- Zhao, W.; Shao, G.; Jiang, M.; Zhao, B.; Wang, H.; Chen, D.; Xu, H.; Li, X.; Zhang, R.; An, L. Ultralight polymer-derived ceramic aerogels with wide bandwidth and effective electromagnetic absorption properties. J. Eur. Ceram. Soc. 2017, 37, 3973–3980. [Google Scholar] [CrossRef]
- Yi, Z.; Zhang, X.; Yan, L.; Huyan, X.; Zhang, T.; Liu, S.; Guo, A.; Liu, J.; Hou, F. Super-insulated, flexible, and high resilient mullite fiber reinforced silica aerogel composites by interfacial modification with nanoscale mullite whisker. Compos. Part B Eng. 2022, 230, 109549. [Google Scholar] [CrossRef]
- You, G.; Han, D.; Tian, H.; Liang, J.; Wang, C.-A.; Yuan, K.; Li, M.; Wang, H.; Zhang, R.; Shao, G. 3D nano-network structured SiCN ceramic aerogels on mullite fiber felts for electromagnetic wave absorption. Ceram. Int. 2022, 48, 35519–35524. [Google Scholar] [CrossRef]
- Yi, Z.; Yan, L.; Zhang, T.; Guo, A.; Liu, J.; Jin, W.; Liu, S.; Jing, W.; Hou, F. Thermal insulated and mechanical enhanced silica aerogel nanocomposite with in-situ growth of mullite whisker on the surface of aluminum silicate fiber. Compos. Part A Appl. Sci. Manuf. 2020, 136, 105968. [Google Scholar] [CrossRef]
- Wen, Z.; Yang, X.; Ming, H.; Peng, Z.; Feng, C. Microstructural and mechanical characterization of a mullite fiber. Ceram. Int. 2021, 47, 33252–33258. [Google Scholar] [CrossRef]
Sample | BET Surface Area (m2 g−1) | Pore Diameter a (nm) | Pore Volume b (cm3 g−1) |
---|---|---|---|
PSZ-BSAG-15% | 52.7 | 12.9 | 0.17 |
PSZ-BSAG-10% | 56.8 | 19.8 | 0.18 |
PSZ-BSAG-5% | 67.5 | 28.1 | 0.19 |
Sample | BET Surface Area (m2 g−1) | Pore Diameter a (nm) | Pore Volume b (cm3 g−1) |
---|---|---|---|
CPSZ-BSAG-15% | 45.4 | 17.8 | 0.13 |
CPSZ-BSAG-10% | 51.2 | 12.6 | 0.16 |
CPSZ-BSAG-5% | 88.6 | 23.2 | 0.21 |
Sample | BET Surface Area (m2 g−1) | Pore Diameter a (nm) | Pore Volume b (cm3 g−1) |
---|---|---|---|
M-CPSZ-BSAG-5% | 11.0 | 25.1 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Pang, L.; Jiang, M.; Zhu, Y.; Wang, F.; Sun, J.; Qi, H. Fabrication of SiCN(O) Aerogel Composites with Low Thermal Conductivity by Wrapping Mesoporous Aerogel Structures over Mullite Fibers. Materials 2022, 15, 8811. https://doi.org/10.3390/ma15248811
Wang W, Pang L, Jiang M, Zhu Y, Wang F, Sun J, Qi H. Fabrication of SiCN(O) Aerogel Composites with Low Thermal Conductivity by Wrapping Mesoporous Aerogel Structures over Mullite Fibers. Materials. 2022; 15(24):8811. https://doi.org/10.3390/ma15248811
Chicago/Turabian StyleWang, Wei, Le Pang, Ming Jiang, Yaping Zhu, Fan Wang, Jingwen Sun, and Huimin Qi. 2022. "Fabrication of SiCN(O) Aerogel Composites with Low Thermal Conductivity by Wrapping Mesoporous Aerogel Structures over Mullite Fibers" Materials 15, no. 24: 8811. https://doi.org/10.3390/ma15248811
APA StyleWang, W., Pang, L., Jiang, M., Zhu, Y., Wang, F., Sun, J., & Qi, H. (2022). Fabrication of SiCN(O) Aerogel Composites with Low Thermal Conductivity by Wrapping Mesoporous Aerogel Structures over Mullite Fibers. Materials, 15(24), 8811. https://doi.org/10.3390/ma15248811