Hemp Seed Oil and Oilseed Radish Oil as New Sources of Raw Materials for the Synthesis of Bio-Polyols for Open-Cell Polyurethane Foams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Reagents
2.3. Characterization of Oils and Their Derivatives
2.4. Characterization of PUR Foams
2.5. Synthesis of Epoxidized Vegetable Oils
2.6. Synthesis of Bio-Polyols
2.7. Preparation of Polyurethane Foams
3. Results
3.1. Characteristics of the Oils
3.2. Synthesis of Epoxidized Oils
3.3. Synthesis of Bio-Polyols
3.4. FTIR Spectroscopy Analysis
3.5. GPC Analysis
3.6. Manufacturing of Open-Cell Polyurethane Foam
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- PU Europe Factsheet N°22-Closed and Open Cell Spray Polyurethane Foam, Federation of European Rigid Polyurethane Foam Association. Available online: https://www.pu-europe.eu/fileadmin/documents/Factsheets_public/Factsheet_22_Differences_between_closed-cell_and_open-cell_spray_polyurethane__PU__foam.pdf (accessed on 23 June 2022).
- Purinova Technical Data Sheet-Purios 500. Available online: https://purios.com/images/upload/product/purios-500/tds-purios-500.pdf (accessed on 11 February 2022).
- Huntsman Agribalance-Technical Data Sheet. Available online: https://huntsmanbuildingsolutions.com/en-US/sites/en_us/files/2022-03/20.00100 Agribalance TDS_EN_Web.pdf (accessed on 30 June 2022).
- Robert, W.; Wood, R.; Andersen, J. Spray Polyurethane Foam Monitoring and Re-Occupancy of High Pressure Open Cell Applications to New Residential Constructions. Available online: https://www.americanchemistry.com/content/download/5114/file/Spray-Polyurethane-Foam-Monitoring-and-Re-Occupancy-of-High-Pressure-Open-Cell-Applications-to-New-Residential-Constructions.pdf (accessed on 29 November 2022).
- Sardon, H.; Mecerreyes, D.; Basterretxea, A.; Avérous, L.; Jehanno, C. From Lab to Market: Current Strategies for the Production of Biobased Polyols. ACS Sustain. Chem. Eng. 2021, 9, 10664–10677. [Google Scholar] [CrossRef]
- Li, Y.; Luo, X.; Hu, S. Polyols and Polyurethanes from Vegetable Oils and Their Derivatives Á Vegetable Oils Á Fatty Acids Á; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Zhang, C.; Garrison, T.F.; Madbouly, S.A.; Kessler, M.R. Recent Advances in Vegetable Oil-Based Polymers and Their Composites. Prog. Polym. Sci. 2017, 71, 91–143. [Google Scholar] [CrossRef]
- Hai, T.A.P.; Tessman, M.; Neelakantan, N.; Samoylov, A.A.; Ito, Y.; Rajput, B.S.; Pourahmady, N.; Burkart, M.D. Renewable Polyurethanes from Sustainable Biological Precursors. Biomacromolecules 2021, 22, 1770–1794. [Google Scholar] [CrossRef]
- Vevere, L.; Fridrihsone, A.; Kirpluks, M.; Cabulis, U. A Review of Wood Biomass-Based Fatty Acids and Rosin Acids Use in Polymeric Materials. Polymers 2020, 12, 2706. [Google Scholar] [CrossRef]
- Kurańska, M.; Beneš, H.; Prociak, A.; Trhlíková, O.; Walterová, Z.; Stochlińska, W. Investigation of Epoxidation of Used Cooking Oils with Homogeneous and Heterogeneous Catalysts. J. Clean. Prod. 2019, 236, 117615. [Google Scholar] [CrossRef]
- Dang, Y.; Luo, X.; Wang, F.; Li, Y. Value-Added Conversion of Waste Cooking Oil and Post-Consumer PET Bottles into Biodiesel and Polyurethane Foams. Waste Manag. 2016, 52, 360–366. [Google Scholar] [CrossRef]
- Keyzer, M.A.; Merbis, M.D.; Voortman, R.L. The Biofuel Controversy. Economist 2008, 156, 507–527. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Sharma, A.; Upadhyaya, K.C. Vegetable Oil: Nutritional and Industrial Perspective. Curr. Genom. 2016, 17, 230–240. [Google Scholar] [CrossRef] [Green Version]
- Kurańska, M.; Banaś, J.; Polaczek, K.; Banaś, M.; Prociak, A.; Kuc, J.; Uram, K.; Lubera, T. Evaluation of Application Potential of Used Cooking Oils in the Synthesis of Polyol Compounds. J. Environ. Chem. Eng. 2019, 7, 103506. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Valorization of Waste Frying Oils and Animal Fats for Biodiesel Production. In Advanced Biofuels and Bioproducts; Springer: New York, NY, USA, 2013; Volume 9781461433, ISBN 9781461433484. [Google Scholar]
- Kim, J.R.; Sharma, S. The Development and Comparison of Bio-Thermoset Plastics from Epoxidized Plant Oils. Ind. Crops Prod. 2012, 36, 485–499. [Google Scholar] [CrossRef]
- Faria, D.; Santos, F.; Machado, G.; Lourega, R.; Eichler, P.; de Souza, G.; Lima, J. Extraction of Radish Seed Oil (Raphanus Sativus L.) and Evaluation of Its Potential in Biodiesel Production. AIMS Energy 2018, 6, 551–565. [Google Scholar] [CrossRef]
- Chammoun, N.; Geller, D.P.; Das, K.C. Fuel Properties, Performance Testing and Economic Feasibility of Raphanus Sativus (Oilseed Radish) Biodiesel. Ind. Crops Prod. 2013, 45, 155–159. [Google Scholar] [CrossRef]
- Ávila, R.N.d.A.; Sodré, J.R. Physical-Chemical Properties and Thermal Behavior of Fodder Radish Crude Oil and Biodiesel. Ind. Crops Prod. 2012, 38, 54–57. [Google Scholar] [CrossRef]
- Valle, P.W.P.A.; Rezende, T.F.; Souza, R.A.A.; Fortes, I.C.P.; Pasa, V.M.D. Combination of Fractional Factorial and Doehlert Experimental Designs in Biodiesel Production: Ethanolysis of Raphanus Sativus l. Var. Oleiferus Stokes Oil Catalyzed by Sodium Ethoxide. Energy Fuels 2009, 23, 5219–5227. [Google Scholar] [CrossRef]
- Cherney, J.H.; Small, E. Industrial Hemp in North America: Production, Politics and Potential. Agronomy 2016, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Brzyski, P.; Barnat-Hunek, D.; Suchorab, Z.; Lagód, G. Composite Materials Based on Hemp and Flax for Low-Energy Buildings. Materials 2017, 10, 510. [Google Scholar] [CrossRef]
- Teleszko, M.; Zając, A.; Rusak, T. Hemp Seeds of the Polish ‘Bialobrzeskie’ and ‘Henola’ Varieties (Cannabis sativa L. Var. Sativa) as Prospective Plant Sources for Food Production. Molecules 2022, 27, 1448. [Google Scholar] [CrossRef]
- Li, R.; Zhang, P.; Liu, T.; Muhunthan, B.; Xin, J.; Zhang, J. Use of Hempseed-Oil-Derived Polyacid and Rosin-Derived Anhydride Acid as Cocuring Agents for Epoxy Materials. ACS Sustain. Chem. Eng. 2018, 6, 4016–4025. [Google Scholar] [CrossRef]
- Moser, B.R.; Cermak, S.C.; Doll, K.M.; Kenar, J.A.; Sharma, B.K. A Review of Fatty Epoxide Ring Opening Reactions: Chemistry, Recent Advances, and Applications. JAOCS J. Am. Oil Chem. Soc. 2022, 99, 801–842. [Google Scholar] [CrossRef]
- Ho, Y.H.; Parthiban, A.; Thian, M.C.; Ban, Z.H.; Siwayanan, P. Acrylated Biopolymers Derived via Epoxidation and Subsequent Acrylation of Vegetable Oils. Int. J. Polym. Sci. 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Manthey, N.W.; Cardona, F.; Francucci, G.; Aravinthan, T. Thermo-Mechanical Properties of Epoxidized Hemp Oil-Based Bioresins and Biocomposites. J. Reinf. Plast. Compos. 2013, 32, 1444–1456. [Google Scholar] [CrossRef] [Green Version]
- Surender, R.; Mahendran, A.R.; Wuzella, G.; Vijayakumar, C.T. Synthesis, Characterization and Degradation Behavior of Thermoplastic Polyurethane from Hydroxylated Hemp Seed Oil. J. Therm. Anal. Calorim. 2016, 123, 525–533. [Google Scholar] [CrossRef]
- Milchert, E.; Smagowicz, A.; Lewandowski, G. Optimization of the Epoxidation of Rapeseed Oil with Peracetic Acid. Org. Process Res. Dev. 2010, 14, 1094–1101. [Google Scholar] [CrossRef]
- Polaczek, K.; Kurańska, M.; Prociak, A. Open-Cell Bio-Polyurethane Foams Based on Bio-Polyols from Used Cooking Oil. J. Clean. Prod. 2022, 359, 132107. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Chemistry of Deep-Fat Frying Oils. J. Food Sci. 2007, 72, R77–R86. [Google Scholar] [CrossRef]
- La Scala, J.; Wool, R.P. Effect of FA Composition on Epoxidation Kinetics of TAG. JAOCS J. Am. Oil Chem. Soc. 2002, 79, 373–378. [Google Scholar] [CrossRef]
- Omonov, T.S.; Kharraz, E.; Curtis, J.M. The Epoxidation of Canola Oil and Its Derivatives. RSC Adv. 2016, 6, 92874–92886. [Google Scholar] [CrossRef]
- Chen, Y.; Biresaw, G.; Cermak, S.C.; Isbell, T.A.; Ngo, H.L.; Chen, L.; Durham, A.L. Fatty Acid Estolides: A Review. JAOCS, J. Am. Oil Chem. Soc. 2020, 97, 231–241. [Google Scholar] [CrossRef]
- Cert, A.; Moreda, W.; Pérez-Camino, M. Chromatographic Analysis of Minor Constituents in Vegetable Oils. J. Chromatogr. A 2000, 881, 131–148. [Google Scholar] [CrossRef]
- Szyczewski, P.; Frankowski, M.; Zioła-Frankowska, A.; Siepak, J.; Szyczewski, T.; Piotrowski, P. A Comparative Study of the Content of Heavy Metals in Oils: Linseed Oil, Rapeseed Oil and Soybean Oil in Technological Production Processes. Arch. Environ. Prot. 2016, 42, 37–40. [Google Scholar] [CrossRef] [Green Version]
- Gharby, S. Refining Vegetable Oils: Chemical and Physical Refining. Sci. World J. 2022, 2022, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Hardesty, J.H.; Mannari, V.M.; Massingill, J.L. Hydrolysis of Epoxidized Soybean Oil in the Presence of Phosphoric Acid. JAOCS, J. Am. Oil Chem. Soc. 2007, 84, 929–935. [Google Scholar] [CrossRef]
- Huntsman Classic-Technical Data Sheet. Available online: https://huntsmanbuildingsolutions.com/en-CA/products/open-cell-insulation/classic (accessed on 6 August 2022).
- Icynene Technical Data Sheet-ICYNENE LD-C-50R. Available online: https://www.icynene.ie/wp-content/uploads/LD-C-50-spray-foam-Spec-Sheet.pdf (accessed on 8 December 2022).
- Huntsman Heat Lok Soya Hfo-Technical Data Sheet. Available online: https://huntsmanbuildingsolutions.com/en-CA/sites/en_ca/files/2021-01/Huntsman Building Solutions %28Demilec%29 Heatlok Soya HFO Technical Data Sheet.pdf (accessed on 12 December 2022).
- BASF Technical Information ENERTITE® OS 200. Available online: https://enertite.ie/app/uploads/2020/04/BASF-Enertite-BDA-.pdf (accessed on 29 November 2022).
- Kairyte, A.; Vejelis, S. Evaluation of Forming Mixture Composition Impact on Properties of Water Blown Rigid Polyurethane (PUR) Foam from Rapeseed Oil Polyol. Ind. Crops Prod. 2015, 66, 210–215. [Google Scholar] [CrossRef]
- Thirumal, M.; Khastgir, D.; Singha, N.K.; Manjunath, B.S.; Naik, Y.P. Effect of Foam Density on the Properties of Water Blown Rigid Polyurethane Foam. J. Appl. Polym. Sci. 2008, 108, 1810–1817. [Google Scholar] [CrossRef]
- Paciorek-Sadowska, J.; Borowicz, M.; Czupryński, B.; Tomaszewska, E.; Liszkowska, J. New Bio-Polyol Based on White Mustard Seed Oil for Rigid PUR-PIR Foams. Polish J. Chem. Technol. 2018, 20, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Paciorek-Sadowska, J.; Borowicz, M.; Czupryński, B.; Tomaszewska, E.; Liszkowska, J. Oenothera Biennis Seed Oil as an Alternative Raw Material for Production of Bio-Polyol for Rigid Polyurethane-Polyisocyanurate Foams. Ind. Crops Prod. 2018, 126, 208–217. [Google Scholar] [CrossRef]
- Marcovich, N.E.; Kurańska, M.; Prociak, A.; Malewska, E.; Kulpa, K. Open Cell Semi-Rigid Polyurethane Foams Synthesized Using Palm Oil-Based Bio-Polyol. Ind. Crops Prod. 2017, 102, 88–96. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids Structure and Properties; Cambridge University Press: Cambridge, UK, 1997; Volume 22, ISBN 9780521499118. [Google Scholar]
- Wu, J.W.; Chu, H.S. Heat Transfer in Open Cell Polyurethane Foam Insulation. Heat Mass Transf. Stoffuebertragung 1998, 34, 247–254. [Google Scholar] [CrossRef]
- Choe, H.; Choi, Y.; Kim, J.H. Threshold Cell Diameter for High Thermal Insulation of Water-Blown Rigid Polyurethane Foams. J. Ind. Eng. Chem. 2019, 73, 344–350. [Google Scholar] [CrossRef]
Common Name | Molecular Weight [g/mol] | C:U (p) | Fatty Acid Profile (%) | ||
---|---|---|---|---|---|
Rapeseed Oil a [29] | Oilseed Radish Oil [16] | Hemp Seed Oil b [23] | |||
Myristic acid | 228.4 | 14:0 | 0.1 | - | - |
Palmitic acid | 256.4 | 16:0 | 4.5 | 6.13 | 7.76 |
Palmitoleic acid | 254.4 | 16:1 (9) | 0.4 | - | 0.16 |
Stearic acid | 284.4 | 18:0 | 2.1 | 1.90 | 2.84 |
Oleic acid | 282.4 | 18:1 (9) | 64.5 | 23.87 | 11.95 |
Linoleic acid | 280.4 | 18:2 (9, 12) | 18.3 | 13.46 | 53.35 |
Linolenic acid | 278.4 | 18:3 (9, 12, 15) | 6.8 | 5.34 | 19.15 |
Arachidic acid | 312.5 | 20:0 | 0.8 | 0.68 | 0.86 |
Gadoleic acid | 310.5 | 20:1 (9) | 1.3 | 8.58 | - |
Behenic acid | 340.6 | 22:0 | 0.4 | - | 0.34 |
Erucic acid | 338.6 | 22:1 (9) | 0.8 | 31.76 | 0.07 |
Components | Share, Parts by Weight |
---|---|
Bio-polyol | 100 |
Polycat 15 | 2.2 |
Polycat 140 | 4.2 |
Tegostab B 8870 | 3.5 |
Dabco EM 400 | 3.5 |
Ortegol 500 | 0.6 |
TCPP | 30 |
H2O | 20 |
Isocyanate | 203 a |
Oil | Ival [g I2/100 g] | Aval [mgKOH/g] | Viscosity [mPa∙s] | Mn [mol/100 g] | Mw [mol/100 g] | %H2O [wt %] |
---|---|---|---|---|---|---|
UCO | 102.59 ± 0.67 | 2.88 ± 0.01 | 91 ± 5 | 847 | 850 | 0.14 ± 0.04 |
RO | 105.78 ± 0.95 | 1.08 ± 0.01 | 88 ± 5 | 846 | 850 | 0.09 ± 0.02 |
OR | 111.05 ± 0.56 | 4.24 ± 0.03 | 84 ± 5 | 836 | 841 | 0.07 ± 0.01 |
HSO | 145.01 ± 1.29 | 4.40 ± 0.24 | 70 ± 5 | 836 | 841 | 0.11 ± 0.01 |
Epoxidized Oil | Eval [mgKOH/g] | Ival [g I2/100 g] | Viscosity [mPa∙s] |
---|---|---|---|
E_UCO | 0.187 ± 0.003 | 46.41 ± 0.64 | 110 ± 10 |
E_RO | 0.196 ± 0.004 | 52.98 ± 0.82 | 120 ± 10 |
E_OR | 0.189 ± 0.001 | 59.33 ± 0.46 | 130 ± 10 |
E_HSO | 0.194 ± 0.002 | 93.27 ± 1.04 | 120 ± 10 |
Epoxidized Oil | Hval [mgKOH/g] | Viscosity [mPa∙s] | Aval [mgKOH/g] | Mn [g/mol] | Mw [g/mol] | %H2O [wt.%] |
---|---|---|---|---|---|---|
P_UCO | 169.6 ± 2.2 | 1430 ± 10 | 2.69 ± 0.03 | 1561 | 2786 | 0.21 ± 0.01 |
P_RO | 177.8 ± 3.1 | 1620 ± 10 | 1.46 ± 0.01 | 1634 | 2950 | 0.11 ± 0.01 |
P_OR | 171.7 ± 0.9 | 1230 ± 10 | 2.73 ± 0.03 | 1449 | 2455 | 0.14 ± 0.01 |
P_HSO | 178.6 ± 1.6 | 1220 ± 10 | 3.31 ± 0.02 | 1437 | 2463 | 0.11 ± 0.02 |
Foam | Apparent Density [kg/m3] | Thermal Conductivity [mW/m∙K] | Open-Cell Content [%] | Compressive Strength [kPa] | Water Vapour Permeability δ [mg/(m∙h∙Pa)] | Water Vapour Diffusion Resistance Factor μ [-] | Short-Term Water Absorption [kg/m2] | Cell Cross-Section Area [mm2] |
---|---|---|---|---|---|---|---|---|
F_UCO | 11.2 ± 0.2 | 38.75 ± 0.85 | 97.71 ± 0.01 | 9.25 ± 1.80 | 0.15 ± 0.01 | 4.66 ± 0.17 | 0.18 ± 0.05 | 0.125 ± 0.082 |
F_RO | 12.0 ± 0.1 | 36.10 ± 1.28 | 98.12 ± 1.26 | 12.63 ± 0.93 | 0.14 ± 0.01 | 5.23 ± 0.22 | 0.18 ± 0.05 | 0.077 ± 0.039 |
F_OR | 12.1 ± 0.2 | 37.44 ± 1.27 | 97.42 ± 0.11 | 9.88 ± 0.57 | 0.14 ± 0.01 | 5.06 ± 0.19 | 0.25 ± 0.02 | 0.134 ± 0.912 |
F_HSO | 11.2 ± 0.4 | 37.74 ± 0.86 | 98.58 ± 1.05 | 9.52 ± 2.04 | 0.12 ± 0.01 | 5.90 ± 0.63 | 0.21 ± 0.03 | 0.127 ± 0.086 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polaczek, K.; Kurańska, M. Hemp Seed Oil and Oilseed Radish Oil as New Sources of Raw Materials for the Synthesis of Bio-Polyols for Open-Cell Polyurethane Foams. Materials 2022, 15, 8891. https://doi.org/10.3390/ma15248891
Polaczek K, Kurańska M. Hemp Seed Oil and Oilseed Radish Oil as New Sources of Raw Materials for the Synthesis of Bio-Polyols for Open-Cell Polyurethane Foams. Materials. 2022; 15(24):8891. https://doi.org/10.3390/ma15248891
Chicago/Turabian StylePolaczek, Krzysztof, and Maria Kurańska. 2022. "Hemp Seed Oil and Oilseed Radish Oil as New Sources of Raw Materials for the Synthesis of Bio-Polyols for Open-Cell Polyurethane Foams" Materials 15, no. 24: 8891. https://doi.org/10.3390/ma15248891
APA StylePolaczek, K., & Kurańska, M. (2022). Hemp Seed Oil and Oilseed Radish Oil as New Sources of Raw Materials for the Synthesis of Bio-Polyols for Open-Cell Polyurethane Foams. Materials, 15(24), 8891. https://doi.org/10.3390/ma15248891