Optimization of Processing Parameter and Mechanical Response Analysis of Advanced Heterogeneous Laminated Composites Using Ni/Al Foils by In Situ Reaction Synthesis
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials and Fabrication Processes
2.2. Materials Characterization
3. Results
3.1. Microstructural Analysis of the Laminated Composites
3.2. Structural Design and Fabrication Processing Parameter Optimization
3.3. Mechanical Properties of the Laminated Composites
3.4. Fracture Characteristics of the Laminated Composites
3.5. Interfacial Evolution during Hot Tensile Deformation
4. Discussion
4.1. Reaction Synthesis Mechanism of the Laminated Composites
4.2. Mechanical Response of the Laminated Structure
5. Conclusions
- (1)
- The evolution of the interface phases in the Ni/Ni3Al laminated composite was shown to be NiAl3, Ni2Al3, NiAl, and Ni3Al in sequence. An excellent interface between the Ni and Ni3Al layers without cracks and voids was observed due to the uniform pressure applied during hot pressing.
- (2)
- The laminated composites hot pressed under 620 °C/5 MPa/1 h + 1150 °C/10 MPa/2 h exhibited a better ultimate tensile strength of 965 MPa and an elongation of 22.6% at room temperature, accompanied with the high-temperature tensile properties with an ultimate tensile strength of 89 MPa and an elongation of 43.8% at 1000 °C.
- (3)
- The layer–thickness relationship of the laminated structure and its matching pattern were important factors affecting the strength and elongation of the laminated composites over a wide range of temperatures, i.e., the alternating Ni3Al and the Ni matrix layers, as well as the dispersed Ni3Al precipitate phases.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Czeppe, T.; Wierzbinski, S. Structure and mechanical properties of NiAl and Ni3Al-based alloys. Int. J. Mech. Sci. 2000, 42, 1499–1518. [Google Scholar] [CrossRef]
- Vecchio, K.S. Synthetic multifunctional metallic-intermetallic laminate composites. Jom 2005, 3, 25–31. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Liu, X.; Vecchio, K.S. Microstructure evolution in pure Ni and Invar-based metallic-intermetallic laminate (MIL) composites. Mater. Sci. Eng. A 2017, 682, 454–465. [Google Scholar] [CrossRef]
- Konieczny, M.; Mola, R.; Thomas, P.; Kopcial, M. Processing, microstructure and properties of laminated Ni-intermetallic composites synthesized using Ni sheets and Al foils. Arch. Metall. Mater. 2011, 56, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Rawers, J.C.; Hansen, J.S.; Alman, D.E.; Hawk, J.A. Formation of sheet metal-intermetallic composites by self-propagating high-temperature reactions. J. Mater. Sci. Lett. 1994, 13, 1357–1360. [Google Scholar] [CrossRef]
- Alman, D.E.; Dogan, C.P.; Hawk, J.A.; Rawers, J.C. Processing, structure and properties of metal-intermetallic composites. Mater. Sci. Eng. A 1995, 192, 624–632. [Google Scholar] [CrossRef]
- Kim, H.Y.; Chung, D.S.; Hong, S.H. Reaction synthesis and microstructures of NiAl/Ni micro-laminated composites. Mater. Sci. Eng. A 2005, 396, 376–384. [Google Scholar] [CrossRef]
- Qiu, X.; Liu, R.; Guo, S.; Graeter, J.H.; Kecskes, L.; Wang, J. Combustion Synthesis Reactions in Cold-Roll ed Ni/Al and Ti/Al Multilayers. Metall. Mater. Trans. A 2009, 40, 1541–1546. [Google Scholar] [CrossRef]
- Kim, H.; Chung, D.; Hong, S. Intermixing criteria for reaction synthesis of Ni/Al multilayered microfoils. Scr. Mater. 2006, 54, 1715–1719. [Google Scholar] [CrossRef]
- Qiu, X.; Wang, J. Experimental evidence of two-stage formation of Al3Ni in reactive Ni/Al multilayer foils. Scr. Mater. 2007, 56, 1055–1058. [Google Scholar] [CrossRef]
- Mumtaz, K.; Echigoya, J.; Nakata, C.; Husain, S.W. Effect of cold rolling and subsequent annealing on hot pressed Ni/Al laminates. J. Mater. Sci. 2001, 36, 3981–3987. [Google Scholar] [CrossRef]
- Seyring, M.; Rettenmayr, M. Impact of crystallography at Ni/NiAl interfaces on the nucleation of Ni3Al. Acta Mater. 2021, 208, 116713. [Google Scholar] [CrossRef]
- Wu, Y.; Li, C.; Li, Y.; Wu, J.; Xia, X.; Liu, Y. Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review. Int. J. Miner. Metall. Mater. 2021, 28, 553–566. [Google Scholar] [CrossRef]
- Wu, J.; Yu, J.; Wang, W.; Gao, S.; Luo, J.; Li, C.; Ma, Z.; Liu, Y. Influences of laser remelt-ing treatments on microstructure and tensile properties of multiphase Ni3Al-based in-termetallic alloy. Mater. Sci. Eng. A 2020, 857, 144087. [Google Scholar] [CrossRef]
- Ogneva, T.S.; Bataev, I.A.; Mali, V.I.; Anisimov, A.G.; Lazurenko, D.V.; Popelyukh, A.I.; Emurlaeva, Y.Y.; Bateaev, A.A.; Tanaka, S.; Yegoshin, K.D. Effect of sintering pressure and temperature on structure and properties of Ni single bond Al metal-intermetallic composites produced by SPS. Mater. Charact. 2021, 180, 111415. [Google Scholar] [CrossRef]
- Konieczny, M. Microstructural characterisation and mechanical response of laminated Ni-intermetallic composites synthesised using Ni sheets and Al foils. Mater. Charact. 2012, 70, 117–124. [Google Scholar] [CrossRef]
- Mizuuchi, K.; Inoue, K.; Sugioka, M.; Itami, M.; Lee, J.; Kawahara, M. Properties of Ni-aluminides-reinforced Ni-matrix laminates synthesized by pulsed-current hot pressing (PCHP). Mater. Sci. Eng. A 2006, 428, 169–174. [Google Scholar] [CrossRef]
- Kim, H.Y.; Chung, D.S.; Enoki, M.; Hong, S.H. Tensile and fracture properties of NiAl/Ni micro-laminated composites prepared by reaction synthesis. J. Mater. Res. 2006, 21, 1141–1149. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.B.; Han, J.C.; Du, S.Y.; Northwood, D.O. Effects of Ni foil thickness on the microstructure and tensile properties of reaction synthesized multilayer composites. Mater. Sci. Eng. A 2007, 445–446, 517–525. [Google Scholar] [CrossRef]
- Xi, X.; Lin, P.; Meng, L.; Xue, S.; Lin, F.; Zhang, Z.; Wang, T. The microstructure and mechanical properties of reaction synthesized Ni-Al intermetallic sheets by pure Ni/Al foils with different thickness ratios. J. Alloy Compd. 2022, 902, 163750. [Google Scholar] [CrossRef]
- Lasek, J.; Chraska, T.; Krecek, P.; Bartuska, P. Phase transformations in nickel rich NiAl using electrical resistivity measurements. Scr. Mater. 1997, 37, 897–902. [Google Scholar] [CrossRef]
- Sun, Y.; Lin, P.; Yuan, S.J. A novel process for integrated forming and reaction synthesis of NiAl alloy curved shells. J. Mater. Process. Technol. 2020, 285, 116798. [Google Scholar] [CrossRef]
- Chen, M.; Fan, G.; Tan, Z.; Yuan, C.; Guo, Q.; Xiong, D.; Chen, M.L.; Zheng, Q.; Li, Z.Q.; Zhang, D. Heat treatment behavior and strengthening mechanisms of CNT/6061Al composites fabricated by flake powder metallurgy. Mater. Charact. 2019, 153, 261–270. [Google Scholar] [CrossRef]
- Liang, F.; Tan, H.; Zhang, B.; Zhang, G. Maximizing necking-delayed fracture of sandwich-structured Ni/Cu/Ni composites. Scr. Mater. 2017, 134, 28–32. [Google Scholar] [CrossRef]
- Kubin, L.P.; Mortensen, A. Geometrically necessary dislocations and straingradient plasticity: A few critical issues. Scripta. Mater. 2003, 48, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Xia, Z.; Liu, J.; Zhu, S.; Zhu, S.; Zhao, Y. Fabrication of laminated metal–intermetallic composites by interlayer in-situ reaction. J. Mater. Sci. 1999, 34, 3731–3735. [Google Scholar] [CrossRef]
- Zhu, P.; Li, J.; Liu, C.T. Reaction mechanism of combustion synthesis of NiAl. Mater. Sci. Eng. A 2002, 329, 57–68. [Google Scholar] [CrossRef]
- Zhu, H.X.; Abbaschian, R. Reactive processing of nickel-aluminide intermetallic compounds. J. Mater. Sci. 2003, 38, 3861–3870. [Google Scholar] [CrossRef]
- Sun, Y.; Lin, P.; Yuan, S.J. A novel method for fabricating NiAl alloy sheet components using laminated Ni/Al foils. Mater. Sci. Eng. A 2019, 754, 428–436. [Google Scholar] [CrossRef]
- Cohades, A.; Cetin, A.; Mortensen, A. Designing laminated metal composites for tensile ductility. Mater. Des. 2015, 66, 412–420. [Google Scholar] [CrossRef]
- Lyu, S.; Sun, Y.; Li, G.; Xiao, W.; Ma, C. Effect of layer sequence on the mechanical properties of Ti/TiAl laminates. Mater. Des. 2018, 143, 160–168. [Google Scholar] [CrossRef]
Marks | Parameters |
---|---|
N1 | 620 °C/5 MPa/1 h + 1100 °C/10 MPa/2 h |
N2 | 620 °C/5 MPa/1 h + 1150 °C/10 MPa/2 h |
N3 | 620 °C/5 MPa/1 h + 1200 °C/10 MPa/2 h |
N4 | 620 °C/5 MPa/1 h + 1150 °C/10 MPa/0.5 h |
N5 | 620 °C/5 MPa/1 h + 1150 °C/10 MPa/1 h |
Position | Average Chemical Composition/at. % | Phase Identity | |
---|---|---|---|
Ni | Al | ||
1 | 77.3 | 22.8 | Ni3Al |
2 | 77.6 | 22.4 | Ni3Al |
3 | 83.0 | 17.0 | Ni + Ni3Al (Precipitates) |
Sample | Yield Strength/MPa | Ultimate Tensile Strength/MPa | Elongation/% |
---|---|---|---|
N1 | 290 | 778 | 22.7 |
N2 | 443 | 965 | 22.6 |
N3 | 450 | 960 | 27.2 |
N4 | 281 | 748 | 18.5 |
N5 | 319 | 887 | 36.5 |
Sample | Temperature/°C | Yield Strength/MPa | Ultimate Tensile Strength/MPa | Elongation/% |
---|---|---|---|---|
N1 | 800 | 216 | 269 | 12.8 |
900 | 145 | 169 | 20.8 | |
1000 | 94 | 99 | 56.6 | |
N2 | 800 | 248 | 307 | 11.8 |
900 | 142 | 181 | 22.4 | |
1000 | 76 | 89 | 43.8 | |
N3 | 800 | 263 | 352 | 12.4 |
900 | 156 | 204 | 18.6 | |
1000 | 64 | 77 | 45.6 | |
N4 | 800 | 192 | 234 | 16.8 |
900 | 137 | 183 | 24.6 | |
1000 | 92 | 101 | 62.6 | |
N5 | 800 | 203 | 235 | 11.1 |
900 | 158 | 181 | 15.4 | |
1000 | 99 | 110 | 23.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Yuan, S. Optimization of Processing Parameter and Mechanical Response Analysis of Advanced Heterogeneous Laminated Composites Using Ni/Al Foils by In Situ Reaction Synthesis. Materials 2022, 15, 8892. https://doi.org/10.3390/ma15248892
Sun Y, Yuan S. Optimization of Processing Parameter and Mechanical Response Analysis of Advanced Heterogeneous Laminated Composites Using Ni/Al Foils by In Situ Reaction Synthesis. Materials. 2022; 15(24):8892. https://doi.org/10.3390/ma15248892
Chicago/Turabian StyleSun, Ying, and Shijian Yuan. 2022. "Optimization of Processing Parameter and Mechanical Response Analysis of Advanced Heterogeneous Laminated Composites Using Ni/Al Foils by In Situ Reaction Synthesis" Materials 15, no. 24: 8892. https://doi.org/10.3390/ma15248892
APA StyleSun, Y., & Yuan, S. (2022). Optimization of Processing Parameter and Mechanical Response Analysis of Advanced Heterogeneous Laminated Composites Using Ni/Al Foils by In Situ Reaction Synthesis. Materials, 15(24), 8892. https://doi.org/10.3390/ma15248892