The Physical Properties and Crystallization Kinetics of Biocomposite Films Based on PLLA and Spent Coffee Grounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Masterbatch Preparation and Film Processing
2.2. Spectral Analysis
2.3. Scanning Electron Microscopy (SEM)
2.4. Crystallization Kinetics
2.5. Thermal Degradation
2.6. Mechanical Measurement
2.7. Dynamic Mechanical Analysis (DMA)
3. Results
3.1. Spectral Analysis
3.2. Scanning Electron Microscopy (SEM)
3.3. Crystallization Kinetics
3.4. Thermal Degradation
3.5. Mechanical Measurements
3.6. Dynamic Mechanical Analysis (DMA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mülhaupt, R. Catalytic Polymerization and Post Polymerization Catalysis Fifty Years After the Discovery of Ziegler’s Catalysts. Macromol. Chem. Phys. 2003, 204, 289–327. [Google Scholar] [CrossRef]
- Philp, J.C.; Ritchie, R.J.; Guy, K. Biobased Plastics in a Bioeconomy. Trends Biotechnol. 2013, 31, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Barker, T.; Bashmakov, I.; Bernstein, L.; Bogner, J.; Bosch, P.; Dave, R.; Davidson, O.; Fisher, B.; Grubb, M.; Gupta, S. Technical Summary. In Climate Change 2007: Mitigation. In Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- La Mantia, F.; Morreale, M. Green Composites: A Brief Review. Compos. Part A Appl. Sci. Manuf. 2011, 42, 579–588. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; Abdul Ghani, A. Expanding Policy for Biodegradable Plastic Products and Market Dynamics of Bio-Based Plastics: Challenges and Opportunities. Sustainability 2021, 13, 6170. [Google Scholar] [CrossRef]
- EUBIO_Admin Market. European Bioplastics e.V.
- Farah, S.; Anderson, D.G.; Langer, R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [Green Version]
- Auras, R.; Harte, B.; Selke, S. An Overview of Polylactides as Packaging Materials. Macromol. Biosci. 2004, 4, 835–864. [Google Scholar] [CrossRef]
- Mochizuki, M. Textile Applications. Poly (Lactic Acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; pp. 619–629. [Google Scholar]
- Muller, J.; González-Martínez, C.; Chiralt, A. Poly (Lactic) Acid (PLA) and Starch Bilayer Films, Containing Cinnamaldehyde, Obtained by Compression Moulding. Eur. Polym. J. 2017, 95, 56–70. [Google Scholar] [CrossRef]
- Rasselet, D.; Caro-Bretelle, A.-S.; Taguet, A.; Lopez-Cuesta, J.-M. Reactive Compatibilization of PLA/PA11 Blends and Their Application in Additive Manufacturing. Materials 2019, 12, 485. [Google Scholar] [CrossRef] [Green Version]
- Sin, L.T. Polylactic Acid: PLA Biopolymer Technology and Applications; William Andrew: Norwich, NY, USA, 2012; ISBN 1-4377-4460-5. [Google Scholar]
- Zengwen, C.; Pan, H.; Chen, Y.; Bian, J.; Han, L.; Zhang, H.; Dong, L.; Yang, Y. Transform Poly (Lactic Acid) Packaging Film from Brittleness to Toughness Using Traditional Industrial Equipments. Polymer 2019, 180, 121728. [Google Scholar] [CrossRef]
- Tábi, T.; Ageyeva, T.; Kovács, J.G. Improving the Ductility and Heat Deflection Temperature of Injection Molded Poly (Lactic Acid) Products: A Comprehensive Review. Polym. Test. 2021, 101, 107282. [Google Scholar] [CrossRef]
- Salmerón Sánchez, M.; Mathot, V.B.F.; Vanden Poel, G.; Gómez Ribelles, J.L. Effect of the Cooling Rate on the Nucleation Kinetics of Poly(l-Lactic Acid) and Its Influence on Morphology. Macromolecules 2007, 40, 7989–7997. [Google Scholar] [CrossRef]
- Aitor, L.; Erlantz, L. Review on the Thermomechanical Properties and Biodegradation Behaviour of Polyester. Eur. Polym. J 2019, 121, 1–31. [Google Scholar]
- Yang, Y.; Zhang, L.; Xiong, Z.; Tang, Z.; Zhang, R.; Zhu, J. Research Progress in the Heat Resistance, Toughening and Filling Modification of PLA. Sci. China Chem. 2016, 59, 1355–1368. [Google Scholar] [CrossRef]
- Ramot, Y.; Haim-Zada, M.; Domb, A.J.; Nyska, A. Biocompatibility and Safety of PLA and Its Copolymers. Adv. Drug Deliv. Rev. 2016, 107, 153–162. [Google Scholar] [CrossRef]
- Fortelny, I.; Ujcic, A.; Fambri, L.; Slouf, M. Phase Structure, Compatibility, and Toughness of PLA/PCL Blends: A Review. Front. Mater. 2019, 6, 206. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.; Choi, M.-C.; Han, D.-H.; Park, T.-S.; Ha, C.-S. Plasticization of Poly (Lactic Acid)(PLA) through Chemical Grafting of Poly (Ethylene Glycol)(PEG) via in Situ Reactive Blending. Eur. Polym. J. 2013, 49, 2356–2364. [Google Scholar] [CrossRef]
- Murariu, M.; Dubois, P. PLA Composites: From Production to Properties. Adv. Drug Deliv. Rev. 2016, 107, 17–46. [Google Scholar] [CrossRef]
- Maiza, M.; Benaniba, M.T.; Quintard, G.; Massardier-Nageotte, V. Biobased Additive Plasticizing Polylactic Acid (PLA). Polimeros 2015, 25, 581–590. [Google Scholar] [CrossRef]
- Dartora, P.C.; da Rosa Loureiro, M.; de Camargo Forte, M.M. Crystallization Kinetics and Morphology of Poly (Lactic Acid) with Polysaccharide as Nucleating Agent. J. Therm. Anal. Calorim. 2018, 134, 1705–1713. [Google Scholar] [CrossRef]
- Battegazzore, D.; Bocchini, S.; Frache, A. Crystallization Kinetics of Poly (Lactic Acid)-Talc Composites. Express Polym. Lett. 2011, 5, 849–858. [Google Scholar] [CrossRef] [Green Version]
- Terroba-Delicado, E.; Fiori, S.; Torres-Giner, S.; Gomez-Caturla, J.; Montanes, N.; Sanchez-Nacher, L. Improving the Mechanical Ductility and Toughness of Injection-Molded Polylactide Pieces by the Dual Incorporation of Liquor Waste Derived Spent Coffee Grounds and Oligomers of Lactic Acid. 2 November 2021. Preprint (Version 1). Available online: https://assets.researchsquare.com/files/rs-1035447/v1/97b0a683-ae91-4208-92fc-0b971337b616.pdf?c=1648436444 (accessed on 20 November 2022). [CrossRef]
- Gupta, A.; Simmons, W.; Schueneman, G.T.; Mintz, E.A. Lignin-Coated Cellulose Nanocrystals as Promising Nucleating Agent for Poly (Lactic Acid). J. Therm. Anal. Calorim. 2016, 126, 1243–1251. [Google Scholar] [CrossRef]
- Saeidlou, S.; Huneault, M.A.; Li, H.; Park, C.B. Poly (Lactic Acid) Crystallization. Prog. Polym. Sci. 2012, 37, 1657–1677. [Google Scholar] [CrossRef]
- Běhálek, L.; Seidl, M.; Dobránsky, J. Crystallization of Polylactic Acid Composites with Banana and Hemp Fibres by Means of DSC and XRD Methods. Appl. Mech. Mater. 2014, 616, 325–332. [Google Scholar] [CrossRef]
- Brzeziński, M.; Biela, T. Polylactide Nanocomposites with Functionalized Carbon Nanotubes and Their Stereocomplexes: A Focused Review. Mater. Lett. 2014, 121, 244–250. [Google Scholar] [CrossRef]
- Murariu, M.; Laoutid, F.; Dubois, P.; Fontaine, G.; Bourbigot, S.; Devaux, E.; Campagne, C.; Ferreira, M.; Solarski, S. Pathways to Biodegradable Flame Retardant Polymer (Nano) Composites. In Polymer Green Flame Retardants; Elsevier: Amsterdam, The Netherlands, 2014; pp. 709–773. [Google Scholar]
- Akindoyo, J.O.; Beg, M.D.; Ghazali, S.; Heim, H.P.; Feldmann, M. Impact Modified PLA-Hydroxyapatite Composites–Thermo-Mechanical Properties. Compos. Part A Appl. Sci. Manuf. 2018, 107, 326–333. [Google Scholar] [CrossRef]
- Herrera, N.; Salaberria, A.M.; Mathew, A.P.; Oksman, K. Plasticized Polylactic Acid Nanocomposite Films with Cellulose and Chitin Nanocrystals Prepared Using Extrusion and Compression Molding with Two Cooling Rates: Effects on Mechanical, Thermal and Optical Properties. Compos. Part A Appl. Sci. Manuf. 2016, 83, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Arrigo, R.; Bartoli, M.; Malucelli, G. Poly (Lactic Acid)–Biochar Biocomposites: Effect of Processing and Filler Content on Rheological, Thermal, and Mechanical Properties. Polymers 2020, 12, 892. [Google Scholar] [CrossRef] [Green Version]
- Battegazzore, D.; Bocchini, S.; Alongi, J.; Frache, A. Rice Husk as Bio-Source of Silica: Preparation and Characterization of PLA–Silica Bio-Composites. RSC Adv. 2014, 4, 54703–54712. [Google Scholar] [CrossRef] [Green Version]
- Suaduang, N.; Ross, S.; Ross, G.; Pratumshat, S.; Mahasaranon, S. Effect of Spent Coffee Grounds Filler on the Physical and Mechanical Properties of Poly (Lactic Acid) Bio-Composite Films. Mater. Today Proc. 2019, 17, 2104–2110. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioprocess Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Machado, E.; Martins, S.; Teixeira, J.A. Production, Composition, and Application of Coffee and Its Industrial Residues. Food Bioprocess Technol. 2011, 4, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Suaduang, N.; Ross, S.; Ross, G.M.; Wangsoub, S.; Mahasaranon, S. The Physical and Mechanical Properties of Biocomposite Films Composed of Poly (Lactic Acid) with Spent Coffee Grounds.; Trans Tech Publications Ltd.: Bäch, Switzerland, 2019; Volume 824, pp. 87–93. [Google Scholar]
- Naguib, H.M.; Hou, G. Exploitation of Natural and Recycled Biomass Resources to Get Eco-Friendly Polymer. J. Polym. Environ. 2022. [Google Scholar] [CrossRef]
- Ku Marsilla, K.I.; Verbeek, C.J.R. Modification of Poly(Lactic Acid) Using Itaconic Anhydride by Reactive Extrusion. Eur. Polym. J. 2015, 67, 213–223. [Google Scholar] [CrossRef]
- Essabir, H.; Raji, M.; Laaziz, S.A.; Rodrique, D.; Bouhfid, R. Thermo-Mechanical Performances of Polypropylene Biocomposites Based on Untreated, Treated and Compatibilized Spent Coffee Grounds. Compos. Part B Eng. 2018, 149, 1–11. [Google Scholar] [CrossRef]
- Jo, M.Y.; Ryu, Y.J.; Ko, J.H.; Yoon, J. Effects of Compatibilizers on the Mechanical Properties of ABS/PLA Composites. J. Appl. Polym. Sci. 2012, 125, E231–E238. [Google Scholar] [CrossRef]
- Du, J.; Wang, Y.; Xie, X.; Xu, M.; Song, Y. Styrene-Assisted Maleic Anhydride Grafted Poly (Lactic Acid) as an Effective Compatibilizer for Wood Flour/Poly (Lactic Acid) Bio-Composites. Polymers 2017, 9, 623. [Google Scholar] [CrossRef] [Green Version]
- Běhálek, L.; Borůvka, M.; Brdlík, P.; Habr, J.; Lenfeld, P.; Kroisová, D.; Veselka, F.; Novák, J. Thermal Properties and Non-Isothermal Crystallization Kinetics of Biocomposites Based on Poly(Lactic Acid), Rice Husks and Cellulose Fibres. J. Therm. Anal. Calorim. 2020, 142, 629–649. [Google Scholar] [CrossRef]
- Ma, P.; Jiang, L.; Ye, T.; Dong, W.; Chen, M. Melt Free-Radical Grafting of Maleic Anhydride onto Biodegradable Poly(Lactic Acid) by Using Styrene as A Comonomer. Polymers 2014, 6, 1528–1543. [Google Scholar] [CrossRef] [Green Version]
- Petruš, J.; Kučera, F.; Petrůj, J. Post-Polymerization Modification of Poly (Lactic Acid) via Radical Grafting with Itaconic Anhydride. Eur. Polym. J. 2016, 77, 16–30. [Google Scholar] [CrossRef]
- Verbeek, C.J.R.; Hanipah, S.H. Grafting Itaconic Anhydride onto Polyethylene Using Extrusion. J. Appl. Polym. Sci. 2010, 116, 3118–3126. [Google Scholar] [CrossRef]
- Tamboli, S.M.; Mhaske, S.T.; Kale, D.D. Crosslinked Polyethylene. Indian J. Chem. Technol. 2004, 11, 853–864. [Google Scholar]
- Sarasua, J.-R.; Prud’homme, R.E.; Wisniewski, M.; Le Borgne, A.; Spassky, N. Crystallization and Melting Behavior of Polylactides. Macromolecules 1998, 31, 3895–3905. [Google Scholar] [CrossRef]
- Jeziorny, A. Parameters Characterizing the Kinetics of the Non-Isothermal Crystallization of Poly (Ethylene Terephthalate) Determined by DSC. Polymer 1978, 19, 1142–1144. [Google Scholar] [CrossRef]
- Coburn, N.; Douglas, P.; Kaya, D.; Gupta, J.; McNally, T. Isothermal and Non-Isothermal Crystallization Kinetics of Composites of Poly (Propylene) and MWCNTs. Adv. Ind. Eng. Polym. Res. 2018, 1, 99–110. [Google Scholar] [CrossRef]
- Muenprasat, D.; Suttireungwong, S.; Tongpin, C. Functionalization of Poly (Lactic Acid) with Maleic Anhydride for Biomedical Application. J. Met. Mater. Miner. 2010, 20, 189–192. [Google Scholar]
- Yang, W.; Fortunati, E.; Dominici, F.; Giovanale, G.; Mazzaglia, A.; Balestra, G.M.; Kenny, J.; Puglia, D. Synergic Effect of Cellulose and Lignin Nanostructures in PLA Based Systems for Food Antibacterial Packaging. Eur. Polym. J. 2016, 79, 1–12. [Google Scholar] [CrossRef]
- Qiu, Z.; Fujinami, S.; Komura, M.; Nakajima, K.; Ikehara, T.; Nishi, T. Nonisothermal Crystallization Kinetics of Poly (Butylene Succinate) and Poly (Ethylene Succinate). Polym. J. 2004, 36, 642–646. [Google Scholar] [CrossRef] [Green Version]
- Brdlík, P.; Borůvka, M.; Běhálek, L.; Lenfeld, P. Biodegradation of Poly (Lactic Acid) Biocomposites under Controlled Composting Conditions and Freshwater Biotope. Polymers 2021, 13, 594. [Google Scholar] [CrossRef]
- Arrieta, M.P.; Peponi, L.; López, D.; Fernández-García, M. Recovery of Yerba Mate (Ilex Paraguariensis) Residue for the Development of PLA-Based Bionanocomposite Films. Ind. Crops Prod. 2018, 111, 317–328. [Google Scholar] [CrossRef]
- Morrell, J.J. Degradation of Lignocellulosic Materials and Its Prevention. Jom 2014, 66, 580–587. [Google Scholar] [CrossRef]
- Mendes, J.F.; Martins, J.T.; Manrich, A.; Luchesi, B.R.; Dantas, A.P.S.; Vanderlei, R.M.; Claro, P.C.; Neto, A.R.D.S.; Mattoso, L.H.C.; Martins, M.A. Thermo-Physical and Mechanical Characteristics of Composites Based on High-Density Polyethylene (HDPE) e Spent Coffee Grounds (SCG). J. Polym. Environ. 2021, 29, 2888–2900. [Google Scholar] [CrossRef]
- Nekhamanurak, B.; Patanathabutr, P.; Hongsriphan, N. The Influence of Micro-/Nano-CaCO3 on Thermal Stability and Melt Rheology Behavior of Poly (Lactic Acid). Energy Procedia 2014, 56, 118–128. [Google Scholar] [CrossRef]
- Tian, J.; Cao, Z.; Qian, S.; Xia, Y.; Zhang, J.; Kong, Y.; Sheng, K.; Zhang, Y.; Wan, Y.; Takahashi, J. Improving Tensile Strength and Impact Toughness of Plasticized Poly(Lactic Acid) Biocomposites by Incorporating Nanofibrillated Cellulose. Nanotechnology 2022, 11, 2469–2482. [Google Scholar] [CrossRef]
- Gálvez, J.; Correa Aguirre, J.P.; Hidalgo Salazar, M.A.; Vera Mondragón, B.; Wagner, E.; Caicedo, C. Effect of Extrusion Screw Speed and Plasticizer Proportions on the Rheological, Thermal, Mechanical, Morphological and Superficial Properties of PLA. Polymers 2020, 12, 2111. [Google Scholar] [CrossRef]
- Coelho, G.O.; Batista, M.J.; Ávila, A.F.; Franca, A.S.; Oliveira, L.S. Development and Characterization of Biopolymeric Films of Galactomannans Recovered from Spent Coffee Grounds. J. Food Eng. 2021, 289, 110083. [Google Scholar] [CrossRef]
Samples | PLLA (g) | DCP (g) | IA (g) | ATBC (g) | SCG (g) |
---|---|---|---|---|---|
MB1 | 50.00 | 0.85 | 10.20 | 0 | 0 |
MB2 | 50.00 | 0.85 | 10.20 | 0 | 17.00 |
MB3 | 74.95 | 0 | 0 | 17.00 | 0 |
MB4 | 60.00 | 0 | 0 | 0 | 17.00 |
Samples | PLLA (wt.%) | IA (wt.%) | ATBC (wt.%) | SCG (wt.%) |
---|---|---|---|---|
PLLA | 100 | 0 | 0 | 0 |
PLLA/SCG | 90 | 0 | 0 | 10 |
PLLA/PLLA-g-IA | 94 | 6 | 0 | 0 |
PLLA/PLLA-g-IA/SCG | 84 | 6 | 0 | 10 |
PLLA/ATBC | 90 | 0 | 10 | 0 |
PLLA/ATBC/SCG | 80 | 0 | 10 | 10 |
PLLA/PLLA-g-IA/ATBC | 84 | 6 | 10 | 0 |
PLLA/PLLA-g-IA/ATBC/SCG | 74 | 6 | 10 | 10 |
Samples | CR (°C/min) | Tg (°C) | Tm (°C) | Tpc (°C) | Tsc (°C) | ΔHm (J/g) | ΔHpc (J/g) | ΔHsc (J/g) | Xc (%) |
---|---|---|---|---|---|---|---|---|---|
PLLA | 5 | 60.9 | 175.5 | 160.9 | 113.0 | 40.2 | 1.4 | 25.9 | 12.2 |
10 | 60.3 | 174.7 | 160.4 | 111.9 | 39.1 | 0.5 | 32.2 | 6.0 | |
20 | 60.9 | 175.5 | 160.9 | 113.0 | 38.2 | 0.3 | 33.3 | 4.4 | |
40 | 60.9 | 175.7 | 156.1 | 113.0 | 38.4 | 0.3 | 34.4 | 3.5 | |
PLLA/SCG | 5 | - | 173.9 | - | - | 43.4 | 0.0 | 0.0 | 45.5 |
10 | - | 173.6 | 160.3 | - | 41.2 | 1.8 | 0.0 | 41.3 | |
20 | 59.0 | 172.5 | 155.3 | 94.1 | 46.5 | 6.6 | 15.8 | 25.4 | |
40 | 58.8 | 172.4 | 155.3 | 97.2 | 45.9 | 6.7 | 26.7 | 13.1 | |
PLLA/PLLA-g-IA | 5 | 59.6 | 172.4 | 156.1 | 105.1 | 44.6 | 4.5 | 8.6 | 31.7 |
10 | 58.9 | 172.7 | 157.2 | 108.2 | 41.6 | 1.8 | 28.7 | 11.1 | |
20 | 59.4 | 173.1 | 158.6 | 109.2 | 41.2 | 1.0 | 33.7 | 6.4 | |
40 | 59.3 | 173.1 | 158.6 | 109.4 | 40.4 | 1.0 | 35.0 | 4.4 | |
PLLA/PLLA-g-IA/SCG | 5 | - | 172.6 | 159.6 | - | 39.7 | 1.3 | 0.0 | 43.1 |
10 | - | 172.0 | 155.5 | 94.8 | 43.1 | 5.0 | 4.1 | 38.2 | |
20 | 59.1 | 171.7 | 154.9 | 99.2 | 43.7 | 5.7 | 24.9 | 14.6 | |
40 | 59.0 | 171.7 | 155.1 | 99.2 | 43.3 | 5.5 | 28.3 | 10.6 | |
PLLA/ATBC | 5 | - | 169.2 | 153.1 | - | 40.4 | 1.5 | 0.0 | 40.8 |
10 | - | 169.1 | 147.2 | 86.6 | 42.5 | 5.2 | 10.2 | 28.4 | |
20 | 40.8 | 168.9 | 148.9 | 92.7 | 42.3 | 4.4 | 24.2 | 14.3 | |
40 | 40.1 | 168.9 | 149.3 | 93.0 | 42.2 | 4.1 | 27.5 | 11.2 | |
PLLA/ATBC/SCG | 5 | - | 169.8 | - | - | 38.5 | 0.0 | 0.0 | 45.4 |
10 | - | 169.3 | 154.9 | - | 38.5 | 0.8 | 0.0 | 44.5 | |
20 | - | 169.0 | 145.7 | 77.1 | 42.0 | 5.8 | 5.6 | 36.1 | |
40 | 40.9 | 168.7 | 143.9 | 82.5 | 42.3 | 6.5 | 18.6 | 20.4 | |
PLLA/PLLA-g-IA/ATBC | 5 | - | 170.0 | 153.1 | - | 37.5 | 1.4 | 0.0 | 40.6 |
10 | - | 169.1 | 146.7 | 90.1 | 40.5 | 4.9 | 12.0 | 26.5 | |
20 | 43.9 | 169.5 | 148.9 | 94.5 | 39.2 | 4.1 | 23.7 | 12.8 | |
40 | 43.6 | 169.4 | 149.1 | 94.4 | 39.1 | 3.7 | 26.1 | 11.0 | |
PLLA/PLLA-g-IA/ATBC/SCG | 5 | - | 171.5 | - | - | 37.7 | 0.0 | 0.0 | 48.0 |
10 | - | 170.2 | 152.0 | 91.8 | 39.9 | 3.9 | 0.9 | 45.2 | |
20 | 49.1 | 170.2 | 149.3 | 91.3 | 42.5 | 5.9 | 19.2 | 22.2 | |
40 | 49.1 | 170.2 | 148.9 | 91.4 | 42.3 | 5.9 | 23.8 | 16.1 |
Samples | CR (°C/min) | Tc (°C) | ΔHc (J/g) | ΔHTc (J/g) | XT (%) |
---|---|---|---|---|---|
PLLA | 5 | 101.7 | 5.43 | 2.40 | 44.2 |
10 | 100.2 | 1.18 | 0.48 | 40.7 | |
20 | - | - | - | - | |
40 | - | - | - | - | |
PLLA/SCG | 5 | 108.2 | 35.45 | 20.13 | 56.8 |
10 | 105.7 | 33.35 | 17.22 | 51.6 | |
20 | 96.2 | 12.20 | 5.97 | 48.9 | |
40 | 93.7 | 0.81 | 0.44 | 54.3 | |
PLLA/PLLA-g-IA | 5 | 100.9 | 21.94 | 9.60 | 43.8 |
10 | 96.6 | 3.29 | 1.61 | 48.9 | |
20 | - | - | - | - | |
40 | - | - | - | - | |
PLLA/PLLA-g-IA/SCG | 5 | 105.9 | 33.37 | 17.87 | 53.6 |
10 | 99.3 | 23.48 | 10.91 | 46.5 | |
20 | 94.5 | 2.67 | 1.46 | 54.7 | |
40 | 91.7 | 0.10 | 0.06 | 60.0 | |
PLLA/ATBC | 5 | 93.8 | 31.48 | 17.95 | 57.0 |
10 | 86.6 | 16.97 | 8.22 | 48.4 | |
20 | 87.5 | 1.37 | 0.58 | 42.3 | |
40 | - | - | - | - | |
PLLA/ATBC/SCG | 5 | 101.6 | 33.17 | 22.33 | 67.3 |
10 | 94.2 | 29.35 | 18.14 | 61.8 | |
20 | 86.9 | 17.34 | 8.21 | 47.3 | |
40 | 83.7 | 0.99 | 0.53 | 53.5 | |
PLLA/PLLA-g-IA/ATBC | 5 | 95.3 | 28.86 | 16.02 | 55.5 |
10 | 88.6 | 11.92 | 5.55 | 46.6 | |
20 | 88.1 | 1.24 | 0.50 | 40.7 | |
40 | - | - | - | - | |
PLLA/PLLA-g-IA/ATBC/SCG | 5 | 101.9 | 31.84 | 18.27 | 57.4 |
10 | 95.0 | 25.47 | 12.36 | 48.5 | |
20 | 90.9 | 4.21 | 1.91 | 45.4 | |
40 | - | - | - | - |
Samples | CR (°C/min) | t1/2 (min) | log Zt | Zc | n | r2 |
---|---|---|---|---|---|---|
PLLA | 5 | 3.87 | −2.10 | 0.00159 | 3.25 | 0.99 |
10 | 2.35 | −1.70 | 0.00201 | 3.98 | 0.99 | |
20 | - | - | - | - | - | |
40 | - | - | - | - | - | |
PLLA/SCG | 5 | 3.23 | −2.46 | 0.00069 | 4.58 | 0.98 |
10 | 2.03 | −1.57 | 0.00267 | 4.75 | 0.98 | |
20 | 1.25 | −0.58 | 0.01315 | 3.86 | 0.99 | |
40 | 0.34 | 1.18 | 0.37839 | 2.71 | 0.98 | |
PLLA/PLLA-g-IA | 5 | 4.43 | −2.72 | 0.00038 | 3.84 | 0.99 |
10 | 2.50 | −1.83 | 0.00148 | 3.71 | 0.97 | |
20 | - | - | - | - | - | |
40 | - | - | - | - | - | |
PLLA/PLLA-g-IA/SCG | 5 | 4.42 | −3.07 | 0.00017 | 4.55 | 0.96 |
10 | 2.97 | −2.03 | 0.00094 | 3.81 | 0.96 | |
20 | 1.70 | −1.08 | 0.00416 | 4.05 | 0.98 | |
40 | 0.35 | 1.19 | 0.38720 | 2.63 | 0.96 | |
PLLA/ATBC | 5 | 5.32 | −2.92 | 0.00024 | 3.83 | 0.99 |
10 | 3.79 | −2.06 | 0.00088 | 3.50 | 0.99 | |
20 | 1.18 | −0.54 | 0.01442 | 4.06 | 0.99 | |
40 | - | - | - | - | - | |
PLLA/ATBC/SCG | 5 | 4.65 | −3.13 | 0.00015 | 4.56 | 0.95 |
10 | 2.54 | −1.64 | 0.00228 | 4.18 | 0.96 | |
20 | 1.75 | −1.05 | 0.00446 | 3.22 | 0.95 | |
40 | 0.40 | 1.05 | 0.28050 | 2.96 | 0.99 | |
PLLA/PLLA-g-IA/ATBC | 5 | 4.54 | −2.71 | 0.00039 | 3.93 | 0.99 |
10 | 3.10 | −1.86 | 0.00138 | 3.57 | 0.99 | |
20 | 1.11 | -0.38 | 0.02084 | 3.64 | 0.99 | |
40 | - | - | - | - | - | |
PLLA/PLLA-g-IA/ATBC/SCG | 5 | 4.37 | −2.88 | 0.00027 | 4.25 | 0.97 |
10 | 3.18 | −2.23 | 0.00059 | 4.01 | 0.96 | |
20 | 1.34 | −0.67 | 0.01069 | 3.79 | 0.99 | |
40 | - | - | - | - | - |
Samples | Td,5 (°C) |
---|---|
PLLA | 328 |
PLLA/SCG | 310 |
PLLA/PLLA-g-IA | 337 |
PLLA/PLLA-g-IA/SCG | 316 |
PLLA/ATBC | 272 |
PLLA/ATBC/SCG | 272 |
PLLA/PLLA-g-IA/ATBC | 272 |
PLLA/PLLA-g-IA/ATBC/SCG | 279 |
Samples | Et (MPa) | σm (MPa) | εtb (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
s | CI(95) | s | CI(95) | s | CI(95) | ||||
PLLA | 3530 | 193 | 120 | 50 | 3 | 2 | 8 | 1 | 1 |
PLLA/SCG | 3599 | 222 | 138 | 36 | 2 | 1 | 19 | 4 | 2 |
PLLA/PLLA-g-IA | 3603 | 173 | 107 | 46 | 2 | 1 | 4 | 1 | 1 |
PLLA/PLLA-g-IA/SCG | 3386 | 221 | 137 | 33 | 2 | 1 | 11 | 4 | 2 |
PLLA/ATBC | 2834 | 300 | 186 | 39 | 2 | 1 | 7 | 3 | 2 |
PLLA/ATBC/SCG | 2049 | 193 | 120 | 25 | 1 | 1 | 36 | 11 | 7 |
PLLA/PLLA-g-IA/ATBC | 1475 | 135 | 84 | 25 | 2 | 1 | 127 | 88 | 55 |
PLLA/PLLA-g-IA/ATBC/SCG | 1293 | 267 | 165 | 23 | 3 | 2 | 241 | 35 | 22 |
Samples | T (°C) | E′ (MPa) | E″ (MPa) | tan δ (-) | E* (MPa) |
---|---|---|---|---|---|
PLLA | 10 | 2276 | 37 | 0.016 | 2277 |
23 | 2222 | 42 | 0.019 | 2223 | |
40 | 2140 | 51 | 0.024 | 2141 | |
50 | 2088 | 65 | 0.031 | 2090 | |
PLLA/SCG | 10 | 2632 | 43 | 0.017 | 2633 |
23 | 2596 | 44 | 0.017 | 2597 | |
40 | 2465 | 56 | 0.023 | 2466 | |
50 | 2354 | 76 | 0.032 | 2356 | |
PLLA/PLLA-g-IA | 10 | 2449 | 35 | 0.015 | 2449 |
23 | 2374 | 45 | 0.019 | 2375 | |
40 | 2260 | 58 | 0.026 | 2261 | |
50 | 2147 | 80 | 0.038 | 2150 | |
PLLA/PLLA-g-IA/SCG | 10 | 3074 | 45 | 0.015 | 3074 |
23 | 3012 | 48 | 0.015 | 3013 | |
40 | 2833 | 69 | 0.024 | 2834 | |
50 | 2617 | 139 | 0.047 | 2623 | |
PLLA/ATBC | 10 | 2282 | 65 | 0.028 | 2284 |
23 | 2251 | 63 | 0.028 | 2253 | |
40 | 2017 | 90 | 0.044 | 2021 | |
50 | - | - | - | - | |
PLLA/ATBC/SCG | 10 | 2009 | 185 | 0.093 | 2027 |
23 | 1907 | 181 | 0.096 | 1925 | |
40 | 1412 | 238 | 0.169 | 1453 | |
50 | - | - | - | - | |
PLLA/PLLA-g-IA/ATBC | 10 | 2506 | 133 | 0.053 | 2513 |
23 | 2361 | 144 | 0.061 | 2370 | |
40 | 1007 | 384 | 0.038 | 1131 | |
50 | - | - | - | - | |
PLLA/PLLA-g-IA/ATBC/SCG | 10 | 2733 | 122 | 0.045 | 2738 |
23 | 2516 | 133 | 0.053 | 2523 | |
40 | 1131 | 376 | 0.033 | 1241 | |
50 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novák, J.; Běhálek, L.; Borůvka, M.; Lenfeld, P. The Physical Properties and Crystallization Kinetics of Biocomposite Films Based on PLLA and Spent Coffee Grounds. Materials 2022, 15, 8912. https://doi.org/10.3390/ma15248912
Novák J, Běhálek L, Borůvka M, Lenfeld P. The Physical Properties and Crystallization Kinetics of Biocomposite Films Based on PLLA and Spent Coffee Grounds. Materials. 2022; 15(24):8912. https://doi.org/10.3390/ma15248912
Chicago/Turabian StyleNovák, Jan, Luboš Běhálek, Martin Borůvka, and Petr Lenfeld. 2022. "The Physical Properties and Crystallization Kinetics of Biocomposite Films Based on PLLA and Spent Coffee Grounds" Materials 15, no. 24: 8912. https://doi.org/10.3390/ma15248912
APA StyleNovák, J., Běhálek, L., Borůvka, M., & Lenfeld, P. (2022). The Physical Properties and Crystallization Kinetics of Biocomposite Films Based on PLLA and Spent Coffee Grounds. Materials, 15(24), 8912. https://doi.org/10.3390/ma15248912