Experimental Study on Variable-Amplitude Fatigue Performance of M60 High-Strength Bolts of Grid Structures with Bolted Spherical Joints
Abstract
:1. Introduction
2. M60 High-Strength Bolts and Bolted Sphere
2.1. M60 High-Strength Bolts
2.2. BS300 Bolted Sphere
3. Material Properties
4. Loading Equipment and Scheme
4.1. Loading Equipment
4.2. Loading Scheme
5. Analysis of Variable-Amplitude Fatigue Test
5.1. Miner’s Theory on Fatigue Damage Calculation
5.2. Corten–Dolan’s Theory on Fatigue Damage Calculation
6. Conclusions
- The variable-amplitude fatigue performance of eight M60 high-strength bolts was successfully analyzed in four loading modes using an Amsler fatigue testing machine;
- The damage values of the variable-amplitude fatigue tests were calculated utilizing Miner and Corten–Dolan’s theories. The results showed that the DM values calculated using Miner’s theory showed a significant deviation, while the DCD values calculated by Corten–Dolan’s theory were close to 1.0 and their dispersion markedly declined. Thus, Corten–Dolan’s theory fully demonstrated its applicability to estimating the variable-amplitude fatigue life of M60 high-strength bolts;
- The fatigue fracture analyzed via scanning electron microscopy (SEM) presented typical fatigue damage characteristics, showing the fatigue source, the propagation zone, and the transient fracture zone, revealing the failure mechanism of high-strength bolts under variable-amplitude fatigue.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
N | Number of cycles to failure |
Nf | Total number of cycles to failure |
ni | Number of cycles incurred at σi |
Δσ | Stress range |
σmax | Maximum stress |
σmin | Minimum stress |
D | Total fatigue damage |
References
- Nam, J.; Kim, D.; Kim, K.; Choi, S.; Oh, J.H. Unified fatigue life prediction of bolts with different sizes and lengths under various axial loading conditions. Eng. Fail. Anal. 2022, 131, 105841. [Google Scholar] [CrossRef]
- Maljaars, J.; Euler, M. Fatigue S-N curves of bolts and bolted connections for application in civil engineering structures. Int. J. Fatigue 2021, 151, 106355. [Google Scholar] [CrossRef]
- Majzoobi, G.H.; Farrahi, G.H.; Habibi, N. Experimental evaluation of the effect of thread pitch on fatigue life of bolts. Int. J. Fatigue 2005, 27, 189–196. [Google Scholar] [CrossRef]
- Schaumann, P.; Eichstädt, R. Fatigue Assessment of High-Strength Bolts with Very Large Diameters in Substructures for Offshore Wind Turbines. In Proceedings of the Twenty-Fifth International Ocean and Polar Engineering, Kona, HI, USA, 21–26 June 2015; Available online: https://onepetro.org/ISOPEIOPEC/proceedings/ISOPE15/All-ISOPE15/ISOPE-I-15-714/15124 (accessed on 16 October 2022).
- Bartsch, H.; Feldmann, M. Reassessment of fatigue detail categories of bolts and rods according to EC 3-1-9. J. Constr. Steel Res. 2021, 180, 106588. [Google Scholar] [CrossRef]
- Jawwad, A.K.A.; ALShabatat, N.; Mahdi, M. The effects of joint design, bolting procedure and load eccentricity on fatigue failure characteristics of high-strength steel bolts. Eng. Fail. Anal. 2021, 122, 105279. [Google Scholar] [CrossRef]
- Hobbs, J.W.; Burguete, R.L.; Heyes, P.F.; Patterson, E.A. The effect of eccentric loading on the fatigue performance of high-tensile bolts. Int. J. Fatigue 2000, 6, 22. [Google Scholar] [CrossRef]
- Marcelo, A.L.; Uehara, A.Y.; Utiyama, R.M.; Ferreira, I. Fatigue Properties of High Strength Bolts. Procedia Eng. 2011, 10, 1297–1302. [Google Scholar] [CrossRef]
- Ding, B.; Zhao, Y.; Huang, Z.; Cai, L.; Wang, N. Tensile bearing capacity for bolted spherical joints with different screwing depths of high-strength bolts. Eng. Struct. 2020, 225, 111255. [Google Scholar] [CrossRef]
- Macek, W.; Marciniak, Z.; Branco, R.; Rozumek, D.; Królczyk, G.M. A fractographic study exploring the fracture surface topography of S355J2 steel after pseudo-random bending-torsion fatigue tests. Measurement 2021, 178, 109443. [Google Scholar] [CrossRef]
- Macek, W.; Robak, G.; Żak, K.; Branco, R. Fracture surface topography investigation and fatigue life assessment of notched austenitic steel specimens. Eng. Fail. Anal. 2022, 135, 106121. [Google Scholar] [CrossRef]
- Benasciutti, D.; Whittaker, M.T.; Dirlik, T. Fracture, Fatigue, and Structural Integrity of Metallic Materials and Components Undergoing Random or Variable Amplitude Loadings. Metals 2022, 12, 919. [Google Scholar] [CrossRef]
- Yang, X.; Lei, H. Constant amplitude fatigue test of high strength bolts in grid structures with bolt-sphere joints. Steel Compos. Struct. Int. J. 2017, 25, 571–579. [Google Scholar] [CrossRef]
- Qiu, B.; Yang, X.; Zhou, Z.; Lei, H. Experimental study on fatigue performance of M30 high-strength bolts in bolted spherical joints of grid structures. Eng. Struct. 2020, 205, 110123. [Google Scholar] [CrossRef]
- Zhou, Z.; Lei, H.; Yang, X.; Qiu, B. Experimental Study of Constant-Amplitude Fatigue Performance of M39 High-Strength Bolts in Grid Structures with Bolt-Sphere Joints. Mob. Inf. Syst. 2022, 2022, 4155732. [Google Scholar] [CrossRef]
- Zhou, Z.; Lei, H.; Qiu, B.; Zhang, S.; Wang, G. Experimental Study on Fatigue Performance of M60 High-Strength Bolts with a Huge Diameter under Constant Amplitude Applied in Bolt–Sphere Joints of Grid Structures. Appl. Sci. 2022, 12, 8639. [Google Scholar] [CrossRef]
- Qiu, B.; Lei, H.; Yang, X.; Zhou, Z.; Wang, G. Variable amplitude fatigue test of M30 high-strength bolt in bolt-sphere joint grid structures. Steel Compos. Struct. Int. J. 2019, 33, 433–444. [Google Scholar]
- EN 1993-1-9; Eurocode 3: Design of Steel Structures-Part 1-9: Fatigue. European Committee for Standardization: Brussels, Belgium, 2005.
- ANSI/AISC 360-16; Specification for Structural Steel Buildings. AISC (American Institute of Steel Construction): Chicago, IL, USA, 2016.
- GB50017-2017; Code for design of steel structures. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2017.
- JG/T 10-2016; Bolted Spherical Node of Space Grid Structures. Tetrasteel: Modena, Italy, 2016.
- ISO 6892-1; Metallic Materials–Tensile Testing–Part 1: Method of Test at Room Temperature. International Standard. International Organization for Standardization: Geneva, Switzerland, 2009.
- GB/T 16939-2016; High Strength Bolts for Joints of Space Grid Structures. Global Fastener Inc.: Pittsburgh, PA, USA, 2016.
- Birnbaum, Z.W.; Saunders, S.C. A Probabilistic Interpretation of Miner’s Rule. SIAM J. Appl. Math. 1968, 16, 637–652. [Google Scholar] [CrossRef]
- Zhu, S.P.; Huang, H.Z.; Liu, Y.; He, L.P.; Liao, Q.A. Practical Method for Determining the Corten-Dolan Exponent and Its Application to Fatigue Life Prediction. De Gruyter 2012, 29, 79–87. [Google Scholar] [CrossRef]
Specimen ID | ||||||
---|---|---|---|---|---|---|
M60-a | 930.6 | 931.0 | 1047.1 | 1049.3 | 17.6 | 17.2 |
M60-b | 922.3 | 1068.6 | 17.8 | |||
M60-c | 929.8 | 1032.2 | 16.5 |
Specimen ID | σmax (MPa) | σmin (MPa) | Δσi (MPa) | Ni (×104 Cycles) | Nf (×104 Cycles) | Loading Modes |
---|---|---|---|---|---|---|
M60-7 | 315.7 | 98.6 | 217.1 | 3.70 | 13.75 | H–L |
161.7 | 51.3 | 110.4 | 10.05 | |||
M60-22 | 138.0 | 43.4 | 94.6 | 23.66 | 76.47 | H–L |
105.5 | 35.5 | 71 | 52.81 | |||
M60-31 | 138.0 | 43.4 | 94.6 | 21.48 | 41.63 | H–L |
94.6 | 31.5 | 63.1 | 20.15 | |||
M60-32 | 94.6 | 31.5 | 63.1 | 20.52 | 118.67 | L–H |
138.0 | 43.4 | 94.6 | 19.73 | |||
161.7 | 51.3 | 110.4 | 78.42 | |||
M60-33 | 94.6 | 31.5 | 63.1 | 20.55 | 52.19 | L–H |
105.5 | 35.5 | 71 | 20.15 | |||
138.0 | 43.4 | 94.6 | 11.49 | |||
M60-34 | 138.0 | 43.4 | 94.6 | 50.46 | 132.68 | H–L–H |
94.6 | 31.5 | 63.1 | 51.88 | |||
105.5 | 35.5 | 71 | 30.34 | |||
M60-35 | 94.6 | 31.5 | 63.1 | 96.67 | 238.67 | L–H–L |
138.0 | 43.4 | 94.6 | 114.01 | |||
161.7 | 51.3 | 110.4 | 7.84 | |||
105.5 | 35.5 | 71.0 | 20.15 | |||
M60-36 | 94.6 | 31.5 | 63.1 | 162.64 | 235.11 | L–H–L |
138.0 | 43.4 | 94.6 | 52.37 | |||
105.5 | 35.5 | 71.0 | 20.10 |
Specimen ID | Δσi (MPa) | ni (×104 Cycles) | DM | Loading Mode |
---|---|---|---|---|
M60-7 | 217.1 | 3.70 | 0.777 | H–L |
110.4 | 10.05 | |||
M60-22 | 94.6 | 23.66 | 0.720 | H–L |
71.0 | 52.81 | |||
M60-31 | 94.6 | 21.48 | 0.424 | H–L |
63.1 | 20.15 | |||
M60-32 | 63.1 | 20.52 | 1.910 | L–H |
94.6 | 19.73 | |||
110.4 | 78.42 | |||
M60-33 | 63.1 | 20.55 | 2.382 | L–H |
71.0 | 20.15 | |||
94.6 | 11.49 | |||
M60-34 | 94.6 | 50.46 | 1.228 | H–L–H |
63.1 | 51.88 | |||
71.0 | 30.34 | |||
M60-35 | 63.1 | 96.67 | 2.521 | L–H–L |
94.6 | 114.01 | |||
110.4 | 7.84 | |||
71.0 | 20.15 | |||
M60-36 | 63.1 | 162.64 | 1.738 | L–H–L |
94.6 | 52.37 | |||
71.0 | 20.10 |
Specimen ID | Δσi (MPa) | ni (× 104 Cycles) | DCD | Loading Mode |
---|---|---|---|---|
M60-7 | 217.1 | 3.70 | 1.106 | H–L |
110.4 | 10.05 | |||
M60-22 | 94.6 | 23.66 | 1.563 | H–L |
71.0 | 52.81 | |||
M60-31 | 94.6 | 21.48 | 1.134 | H–L |
63.1 | 20.15 | |||
M60-32 | 63.1 | 20.52 | 1.137 | L–H |
94.6 | 19.73 | |||
110.4 | 78.42 | |||
M60-33 | 63.1 | 20.55 | 1.698 | L–H |
71.0 | 20.15 | |||
94.6 | 11.49 | |||
M60-34 | 94.6 | 50.46 | 1.300 | H–L–H |
63.1 | 51.88 | |||
71.0 | 30.34 | |||
M60-35 | 63.1 | 96.67 | 9.079 | L–H–L |
94.6 | 114.01 | |||
110.4 | 7.84 | |||
71 | 20.15 | |||
M60-36 | 63.1 | 162.64 | 1.541 | L–H–L |
94.6 | 52.37 | |||
71.0 | 20.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Zhang, S.; Lei, H.; Qiu, B.; Zhang, L.; Wang, G. Experimental Study on Variable-Amplitude Fatigue Performance of M60 High-Strength Bolts of Grid Structures with Bolted Spherical Joints. Materials 2022, 15, 8939. https://doi.org/10.3390/ma15248939
Zhou Z, Zhang S, Lei H, Qiu B, Zhang L, Wang G. Experimental Study on Variable-Amplitude Fatigue Performance of M60 High-Strength Bolts of Grid Structures with Bolted Spherical Joints. Materials. 2022; 15(24):8939. https://doi.org/10.3390/ma15248939
Chicago/Turabian StyleZhou, Zichun, Shujia Zhang, Honggang Lei, Bin Qiu, Liang Zhang, and Guoqing Wang. 2022. "Experimental Study on Variable-Amplitude Fatigue Performance of M60 High-Strength Bolts of Grid Structures with Bolted Spherical Joints" Materials 15, no. 24: 8939. https://doi.org/10.3390/ma15248939
APA StyleZhou, Z., Zhang, S., Lei, H., Qiu, B., Zhang, L., & Wang, G. (2022). Experimental Study on Variable-Amplitude Fatigue Performance of M60 High-Strength Bolts of Grid Structures with Bolted Spherical Joints. Materials, 15(24), 8939. https://doi.org/10.3390/ma15248939