Recycling Pomelo Peel Waste in the Form of Hydrochar Obtained by Microwave-Assisted Hydrothermal Carbonization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microwave-Assisted HTC Experiments
2.3. Analysis of Raw PP and HC
2.3.1. Proximate and Elemental Analysis
2.3.2. Analysis of pH, EC, and Nutrients
2.3.3. Thermogravimetric Analysis
2.3.4. Surface/Pore Structure Analysis
2.4. Analysis of PW
3. Results and Discussion
3.1. Yields of HC
3.2. Proximate/Elemental Compositions of HC
3.3. The pH, EC, and Nutrient Compositions of HC
3.4. Surface and Pore Structure Characteristics of HC
3.4.1. Surface Morphology of HC
3.4.2. Surface Functional Group of HC
3.4.3. Pore Structure of HC
3.5. Pyrolysis and Combustion Characteristics of HC
3.5.1. Pyrolysis Characteristics of HC
3.5.2. Combustion Characteristics of HC
3.6. Characteristics of PW
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, L.; Ye, F.Z.; Zhou, Y.; Zhao, G.H. Utilization of pomelo peels to manufacture value-added products: A review. Food Chem. 2021, 351, 129247. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.L.; Yang, X.W.; Wu, B.F.; Shang, J.H.; Liu, Y.P.; Dai, Z.; Luo, X.D. Anti-inflammatory effect of pomelo peel and its bioactive coumarins. J. Agric. Food Chem. 2019, 67, 8810–8818. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Qiao, L.; Yang, F.J.; Gu, H.Y.; Yang, L. Brönsted acidic ionic liquid based ultrasound-microwave synergistic extraction of pectin from pomelo peels. Int. J. Biol. Macromol. 2017, 94, 309–318. [Google Scholar] [CrossRef]
- Zhao, T.; Yao, Y.; Li, D.R.; Wu, F.; Zhang, C.Z.; Gao, B. Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for Ag(I) and Pb(II). Sci. Total Environ. 2018, 640–641, 73–79. [Google Scholar] [CrossRef]
- Dinh, V.P.; Nguyen, D.K.; Luu, T.T.; Nguyen, Q.H.; Tuyen, L.A.; Phong, D.D.; Kiet, H.A.T.; Ho, T.H.; Nguyen, T.H.P.; Xuan, T.D.; et al. Adsorption of Pb(II) from aqueous solution by pomelo fruit peel-derived biochar. Mater. Chem. Phys. 2022, 285, 126105. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Huang, J.C.; Zhong, Y.; Hu, W.; Xie, D.; Zhao, C.X.; Qiao, Y. Copper supported on activated carbon from hydrochar of pomelo peel for efficient H2S removal at room temperature: Role of copper valance, humidity and oxygen. Fuel 2022, 319, 123774. [Google Scholar] [CrossRef]
- Yin, Z.B.; Xu, S.; Liu, S.; Xu, S.Y.; Li, J.H.; Zhang, Y.C. A novel magnetic biochar prepared by K2FeO4-promoted oxidative pyrolysis of pomelo peel for adsorption of hexavalent chromium. Bioresour. Technol. 2020, 300, 122680. [Google Scholar] [CrossRef]
- Ao, H.T.; Cao, W.; Hong, Y.X.; Wu, J.; Wei, L. Adsorption of sulfate ion from water by zirconium oxide-modified biochar derived from pomelo peel. Sci. Total Environ. 2020, 708, 135092. [Google Scholar] [CrossRef]
- Wang, W.Q.; Chen, M. Catalytic degradation of sulfamethoxazole by peroxymonosulfate activation system composed of nitrogen-doped biochar from pomelo peel: Important roles of defects and nitrogen, and detoxification of intermediates. J. Colloid. Interf. Sci. 2022, 613, 57–70. [Google Scholar] [CrossRef]
- Min, L.J.; Zhang, P.; Fan, M.Y.; Xu, X.J.; Wang, C.P.; Tang, J.C.; Sun, H.W. Efficient degradation of p-nitrophenol by Fe@pomelo peel-derived biochar composites and its mechanism of simultaneous reduction and oxidation process. Chemosphere 2021, 267, 129213. [Google Scholar] [CrossRef]
- Wang, C.; Yun, S.; Xu, H.F.; Wang, Z.Q.; Han, F.; Zhang, Y.L.; Si, Y.M.; Sun, M.L. Dual functional application of pomelo peel-derived bio-based carbon with controllable morphologies: An efficient catalyst for triiodide reduction and accelerant for anaerobic digestion. Ceram. Int. 2020, 46, 3292. [Google Scholar] [CrossRef]
- Wang, N.; Li, T.F.; Song, Y.; Liu, J.J.; Wang, F. Metal-free nitrogen-doped porous carbons derived from pomelo peel treated by hypersaline environments for oxygen reduction reaction. Carbon 2018, 130, 692–700. [Google Scholar] [CrossRef]
- Lu, J.M.; Mishra, P.K.; Hunter, T.N.; Yang, F.; Lu, Z.G.; Harbottle, D.; Xu, Z.H. Functionalization of mesoporous carbons derived from pomelo peel as capacitive electrodes for preferential removal/recovery of copper and lead from contaminated water. Chem. Eng. J. 2022, 433, 134508. [Google Scholar] [CrossRef]
- Li, C.X.; He, P.; Jia, L.P.; Zhang, X.Q.; Zhang, T.H.; Dong, F.Q.; He, M.Q.; Wang, S.; Zhou, L.H.; Yang, T.T.; et al. Facile synthesis of 3D CuS micro-flowers grown on porous activated carbon derived from pomelo peel as electrode for high-performance supercapacitors. Electrochim. Acta 2019, 299, 253–261. [Google Scholar] [CrossRef]
- Liu, J.Y.; Li, H.P.; Zhang, H.S.; Liu, Q.; Li, R.M.; Li, B.; Wang, J. Three-dimensional hierarchical and interconnected honeycomb-like porous carbon derived from pomelo peel for high performance supercapacitors. J. Solid State Chem. 2018, 257, 64–71. [Google Scholar] [CrossRef]
- Wei, Y.Y.; Fakudze, S.; Zhang, Y.; Song, M.; Xue, T.J.; Xie, R.Y.; Chen, J.Q. Low-temperature hydrothermal liquefaction of pomelo peel for production of 5-hydroxymethylfurfural-rich bio-oil using ionic liquid loaded ZSM-5. Bioresour. Technol. 2022, 352, 127050. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.L.; Cao, M.; Guo, H.; Qi, W.; Su, R.X.; He, Z.M. Enhanced ethanol production from pomelo peel waste by integrated hydrothermal treatment, multienzyme formulation, and fed-batch operation. J. Agric. Food Chem. 2014, 62, 4643–4651. [Google Scholar] [CrossRef]
- Wei, Y.Y.; Fakudze, S.; Zhang, Y.M.; Ma, R.; Shang, Q.Q.; Chen, J.Q.; Liu, C.G.; Chu, Q.L. Co-hydrothermal carbonization of pomelo peel and PVC for production of hydrochar pellets with enhanced fuel properties and dichlorination. Energy 2022, 239, 122350. [Google Scholar] [CrossRef]
- Ma, R.; Fakudze, S.; Shang, Q.Q.; Wei, Y.Y.; Chen, J.Q.; Liu, C.G.; Han, J.G.; Chu, Q.L. Catalytic hydrothermal carbonization of pomelo peel for enhanced combustibility of coal/hydrochar blends and reduced CO2 emission. Fuel 2021, 304, 121422. [Google Scholar] [CrossRef]
- Xue, T.J.; Fakudze, S.; Ma, R.; Han, J.G.; Chu, Q.L.; Zhou, P.G.; Chen, J.Q. Comparative study of pomelo-peel-derived hydrochar and torrefied poultry-litter on coal fuel blends: Combustibility, synergy factor, and ash analysis. Biofuels Bioprod. Biorefining 2022, 16, 1240–1253. [Google Scholar] [CrossRef]
- Chen, J.Q.; Yu, Y.; Shang, Q.Q.; Han, J.G.; Liu, C.G. Enhanced oil adsorption and nano-emulsion separation of nanofibrous aerogels by coordination of pomelo peel-derived biochar. Ind. Eng. Chem. Res. 2020, 59, 8825–8835. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Y.; Wang, Y.X.; You, L.J.; Shen, X.Q.; Li, S.J. An environmentally friendly carbon aerogels derived from waste pomelo peels for the removal of organic pollutants/oils. Microporous Mesoporous Mater. 2017, 241, 285–292. [Google Scholar] [CrossRef]
- Li, F.Z.; Tang, Y.; Wang, H.L.; Yang, J.J.; Li, S.J.; Liu, J.; Tu, H.; Liao, J.L.; Yang, Y.Y.; Liu, N.; et al. Functionalized hydrothermal carbon derived from waste pomelo peel as solid-phase extractant for the removal of uranyl from aqueous solution. Environ. Sci. Pollut. Res. 2017, 24, 22321–22331. [Google Scholar] [CrossRef] [PubMed]
- Zuo, P.P.; Duan, J.Q.; Fan, H.L.; Qu, S.J.; Shen, W.Z. Facile synthesis high nitrogen-doped porous carbon nanosheet from pomelo peel and as catalyst support for nitrobenzene hydrogenation. Appl. Surf. Sci. 2018, 435, 1020–1028. [Google Scholar] [CrossRef]
- Nizamuddin, S.; Baloch, H.A.; Siddiqui, M.T.H.; Mubarak, N.M.; Tunio, M.M.; Bhutto, A.W.; Jatoi, A.S.; Griffin, G.J.; Srinivasan, M.P. An overview of microwave hydrothermal carbonization and microwave pyrolysis of biomass. Rev. Environ. Sci. Biotechnol. 2018, 17, 813–837. [Google Scholar] [CrossRef]
- Liu, J.Z.; Zhong, F.; Niu, W.J.; Zhao, Y.; Su, J.; Feng, Y.X.; Meng, H.B. Effects of temperature and catalytic methods on the physicochemical properties of microwave-assisted hydrothermal products of crop residues. J. Clean. Prod. 2021, 279, 123512. [Google Scholar] [CrossRef]
- Ahmad, S.; Zhu, X.D.; Wang, Q.; Wei, X.C.; Zhang, S.C. Microwave-assisted hydrothermal treatment of soybean residue and chitosan: Characterization of hydrochars and role of N and P transformation for Pb(II) removal. J. Anal. Appl. Pyrol. 2021, 160, 105330. [Google Scholar] [CrossRef]
- Shao, Y.C.; Tan, H.; Shen, D.S.; Zhou, Y.; Jin, Z.Y.; Zhou, D.; Lu, W.J.; Long, Y.Y. Synthesis of improved hydrochar by microwave hydrothermal carbonization of green waste. Fuel 2020, 266, 117146. [Google Scholar] [CrossRef]
- Guo, D.D.; Wang, Y.; Gao, Y.; Lyu, Y.; Lin, Y.H.; Pan, Y.S.; Zhu, L.; Zhu, Y.Z. Nitrogen migration in products during the microwave-assisted hydrothermal carbonization of spirulina platensis. Bioresour. Technol. 2022, 351, 126968. [Google Scholar] [CrossRef]
- Yu, K.L.; Chen, W.H.; Sheen, H.K.; Chang, J.S.; Lin, C.S.; Ong, H.C.; Show, P.L.; Ng, E.P.; Ling, T.C. Production of microalgal biochar and reducing sugar using wet torrefaction with microwave-assisted heating and acid hydrolysis pretreatment. Renew. Energy 2020, 156, 349–360. [Google Scholar] [CrossRef]
- Gan, Y.Y.; Ong, H.C.; Chen, W.H.; Sheen, H.K.; Chang, J.S.; Chong, C.T.; Ling, T.C. Microwave-assisted wet torrefaction of microalgae under various acids for coproduction of biochar and sugar. J. Clean. Prod. 2020, 253, 119944. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.H.; Zhu, G.K.; Xu, J.Y.; Xu, H.; Yuan, Q.X.; Zhu, Y.Z.; Sarma, J.; Wang, Y.F.; Wang, J.; et al. Microwave-assisted hydrothermal carbonization of dairy manure: Chemical and structural properties of the products. Energy 2018, 165, 662–672. [Google Scholar] [CrossRef]
- Wang, J.X.; Chen, S.W.; Lai, F.Y.; Liu, S.Y.; Xiong, J.B.; Zhou, C.F.; Yi, Y.; Huang, H.J. Microwave-assisted hydrothermal carbonization of pig feces for the production of hydrochar. J. Supercrit. Fluids 2020, 162, 104858. [Google Scholar] [CrossRef]
- Wang, Y.J.; Yu, Y.; Huang, H.J.; Yu, C.L.; Fang, H.S.; Zhou, C.H.; Yin, X.; Chen, W.H.; Guo, X.C. Efficient conversion of sewage sludge into hydrochar by microwave-assisted hydrothermal carbonization. Sci. Total Environ. 2022, 803, 149874. [Google Scholar] [CrossRef]
- Semerciöz, A.S.; Göğüş, F.; Çelekli, A.; Bozkurt, H. Development of carbonaceous material from grapefruit peel with microwave implemented-low temperature hydrothermal carbonization technique for the adsorption of Cu (II). J. Clean. Prod. 2017, 165, 599–610. [Google Scholar] [CrossRef]
- Wang, J.X.; Liu, P.; Lai, F.Y.; Huang, H.J. Pyrolysis of different sewage sludge feedstocks for biochar products: Characterization and application. J. Cent. South Univ. 2020, 27, 3302–3319. [Google Scholar] [CrossRef]
- Hosokai, S.; Matsuoka, K.; Kuramoto, K.; Suzuki, Y. Modification of Dulong’s formula to estimate heating value of gas, liquid and solid fuels. Fuel Process. Technol. 2016, 152, 399–405. [Google Scholar] [CrossRef]
- Huang, H.J.; Chang, Y.C.; Lai, F.Y.; Zhou, C.F.; Pan, Z.Q.; Xiao, X.F.; Wang, J.X.; Zhou, C.H. Co-liquefaction of sewage sludge and rice straw/wood sawdust: The effect of process parameters on the yields/properties of bio-oil and biochar products. Energy 2019, 173, 140–150. [Google Scholar] [CrossRef]
- Chen, X.J.; Lin, Q.M.; He, R.D.; Zhao, X.R.; Li, G.T. Hydrochar production from watermelon peel by hydrothermal carbonization. Bioresour. Technol. 2017, 241, 236–243. [Google Scholar] [CrossRef]
- Xiong, J.B.; Chen, S.W.; Wang, J.X.; Wang, Y.J.; Fang, X.L.; Huang, J.H. Speciation of main nutrients (N/P/K) in hydrochars produced from the hydrothermal carbonization of swine manure under different reaction temperatures. Materials 2021, 14, 4114. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, G.H.; Bai, X.P.; Liu, J.D.; Wang, D.C.; Wang, Z.Q. Combined different dehydration pretreatments and torrefaction to upgrade fuel properties of hybrid pennisetum (Pennisetum americanum × P. purpureum). Bioresour. Technol. 2018, 263, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.A.; Saud, A.S.; Jamari, S.S.; Rahim, M.H.A.; Park, J.W.; Kim, H.J. Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: A review. Biomass Bioenergy 2019, 130, 105384. [Google Scholar] [CrossRef]
- Wang, T.F.; Zhai, Y.B.; Zhu, Y.; Li, C.T.; Zeng, G.M. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. 2018, 90, 223–247. [Google Scholar] [CrossRef]
- Lang, Q.Q.; Zhang, B.; Liu, Z.G.; Jiao, W.T.; Xia, Y.; Chen, Z.L.; Li, D.; Ma, J.; Gai, C. Properties of hydrochars derived from swine manure by CaO assisted hydrothermal carbonization. J. Environ. Manag. 2019, 233, 440–446. [Google Scholar] [CrossRef]
- Lang, Q.Q.; Chen, M.J.; Guo, Y.C.; Liu, Z.G.; Gai, C. Effect of hydrothermal carbonization on heavy metals in swine manure: Speciation, bioavailability and environmental risk. J. Environ. Manag. 2019, 234, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Lang, Q.Q.; Zhang, B.; Li, Y.; Liu, Z.G.; Jiao, W.T. Formation and toxicity of polycyclic aromatic hydrocarbons during CaO assisted hydrothermal carbonization of swine manure. Waste Manag. 2019, 100, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Nizamuddin, S.; Baloch, H.A.; Griffin, G.J.; Mubarak, N.M.; Bhutto, A.W.; Abro, R.; Mazari, S.A.; Ali, B.S. An overview of effect of process parameters on hydrothermal carbonization of biomass. Renew. Sustain. Energy Rev. 2017, 73, 1289–1299. [Google Scholar] [CrossRef]
- Xiong, J.B.; Pan, Z.Q.; Xiao, X.F.; Huang, H.J.; Lai, F.Y.; Wang, J.X.; Chen, W.S. Study on the hydrothermal carbonization of swine manure: The effect of process parameters on the yield/properties of hydrochar and process water. J. Anal. Appl. Pyrol. 2019, 144, 104692. [Google Scholar] [CrossRef]
- Liang, W.; Wang, G.W.; Xu, R.S.; Ning, X.J.; Zhang, J.L.; Guo, X.M.; Ye, L.; Li, J.H.; Jiang, C.H.; Wang, P.; et al. Hydrothermal carbonization of forest waste into solid fuel: Mechanism and combustion behavior. Energy 2022, 246, 123343. [Google Scholar] [CrossRef]
- Pavkov, I.; Radojčin, M.; Stamenković, Z.; Bikić, S.; Tomić, M.; Bukurov, M.; Despotović, B. Hydrothermal Carbonization of Agricultural Biomass: Characterization of Hydrochar for Energy Production. Solid Fuel Chem. 2022, 56, 225–235. [Google Scholar] [CrossRef]
- Martinez, C.L.M.; Sermyagina, E.; Saari, J.; de Jesus, M.S.; Cardoso, M.; de Almeida, G.M.; Vakkilainen, E. Hydrothermal carbonization of lignocellulosic agro-forest based biomass residues. Biomass Bioenergy 2021, 147, 106004. [Google Scholar] [CrossRef]
- Lu, X.L.; Ma, X.Q.; Chen, X.F.; Yao, Z.L.; Zhang, C.Y. Co-hydrothermal carbonization of polyvinyl chloride and corncob for clean solid fuel production. Bioresour. Technol. 2020, 301, 122763. [Google Scholar] [CrossRef] [PubMed]
- Yay, A.S.E.; Birinci, B.; Açıkalın, S.; Yay, K. Hydrothermal carbonization of olive pomace and determining the environmental impacts of post-process products. J. Clean. Prod. 2021, 315, 128087. [Google Scholar] [CrossRef]
- Lang, Q.Q.; Guo, Y.C.; Zheng, Q.F.; Liu, Z.G.; Gai, C. Co-hydrothermal carbonization of lignocellulosic biomass and swine manure: Hydrochar properties and heavy metal transformation behavior. Bioresour. Technol. 2018, 266, 242–248. [Google Scholar] [CrossRef]
- Deng, Y.X.; Zhang, T.; Clark, J.; Aminabhavi, T.; Kruse, A.; Tsang, D.C.W.; Sharma, B.K.; Zhang, F.; Ren, H.Q. Mechanisms and modelling of phosphorus solid–liquid transformation during the hydrothermal processing of swine manure. Green Chem. 2020, 22, 5628–5638. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, Y.; Wang, G.B.; El-Kassaby, Y.A.; Sokhansanj, S. Hydrothermal carbonization of waste ginkgo leaf residues for solid biofuel production: Hydrochar characterization and its pelletization. Fuel 2022, 324, 124341. [Google Scholar] [CrossRef]
- Huang, H.J.; Yang, T.; Lai, F.Y.; Wu, G.Q. Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar. J. Anal. Appl. Pyrol. 2017, 125, 61–68. [Google Scholar] [CrossRef]
- Lai, F.Y.; Chang, Y.C.; Huang, H.J.; Wu, G.Q.; Xiong, J.B.; Pan, Z.Q.; Zhou, C.F. Liquefaction of sewage sludge in ethanol-water mixed solvents for bio-oil and biochar products. Energy 2018, 148, 629–641. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gassolid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Kojić, M.M.; Petrović, J.T.; Petrović, M.S.; Stanković, S.M.; Porobić, S.J.; Marinović-Cincović, M.T.; Mihajlović, M.L. Hydrothermal carbonization of spent mushroom substrate: Physicochemical characterization, combustion behavior, kinetic and thermodynamic study. J. Anal. Appl. Pyrol. 2021, 155, 105028. [Google Scholar] [CrossRef]
- Usman, M.; Chen, H.H.; Chen, K.F.; Ren, S.; Clark, J.H.; Fan, J.J.; Luo, G.; Zhang, S.C. Characterization and utilization of aqueous products from hydrothermal conversion of biomass for bio-oil and hydro-char production: A review. Green Chem. 2019, 21, 1553–1572. [Google Scholar] [CrossRef]
- Leng, S.Q.; Leng, L.J.; Chen, L.L.; Chen, J.F.; Chen, J.; Zhou, W.G. The effect of aqueous phase recirculation on hydrothermal liquefaction/carbonization of biomass: A review. Bioresour. Technol. 2020, 318, 124081. [Google Scholar] [CrossRef] [PubMed]
Items | Elemental Compositions (wt.%) a | H/C c | O/C c | (N+O)/C c | C/N d | Proximate Compositions (wt.%) a | HHV (MJ/kg) | ED | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | H | N | O b | Ash | VOM | FC b | |||||||
PP | 41.2 | 7.6 | 0. 7 | 48.6 | 2.2 | 0.9 | 0.9 | 61.5 | 2.0 | 97.5 | 0.5 | 17.4 | - |
HC-210 e | 57.3 | 6.3 | 1.1 | 35.3 | 1.3 | 0.5 | 0.5 | 54.0 | 0.1 | 99.8 | 0.1 | 23.8 | 1.4 |
HC-190-CaO f | 47.7 | 6.7 | 0.9 | 41.0 | 1.7 | 0.6 | 0.7 | 52.5 | 3.7 | 95.5 | 0.8 | 19.8 | 1.1 |
Items | pH | EC (ms/cm) | Main Nutrients (g/kg) | |||||
---|---|---|---|---|---|---|---|---|
TP | SP | TK | SK | TN a | SN | |||
PP | 4.9 | 1.0 | 1.3 | 0.6 | 15.8 | 13.2 | 6.7 | 0.8 |
HC-210 | 5.0 | 0.5 | 0.6 | 0.03 | 1.0 | 1.0 | 10.6 | 0.5 |
HC-190-CaO | 6.2 | 1.9 | 2.6 | 0.4 | 2.1 | 1.3 | 9.1 | 0.6 |
Items | Specific Surface Area (m2/g) a | Average Pore Size (nm) b | Micropore Volume (cm3/g) c | Pore Volume (cm3/g) b | Pore size Distribution (%) b | |||||
---|---|---|---|---|---|---|---|---|---|---|
≤2.0 nm | 3–10 nm | 11–50 nm | 51–100 nm | 101–200 nm | >200 nm | |||||
PP d | 0.7 | 9.6 | - e | 0.002 | - | - | - | - | - | - |
HC-210 | 3.7 | 22.7 | 0.0014 | 0.028 | 0.1 | 14.7 | 34.0 | 17.3 | 9.7 | 24.2 |
HC-190-CaO | 4.3 | 24.6 | 0.0015 | 0.036 | 0.2 | 11.5 | 33.8 | 24.6 | 21.0 | 8.9 |
Items | Tin (°C) | Tm (°C) | DTGmean (wt.%/min) | ∆T1/2 (°C) | DI (wt.%·min−1·°C−3, ×10−6) |
---|---|---|---|---|---|
PP | 161.3 | 215.4 | 12.4 | 155.6 | 2.3 |
HC-210 | 231.6 | 361.4 | 18.6 | 29.1 | 7.6 |
HC-190-CaO | 146.0 | 368.8 | 15.7 | 51.0 | 5.7 |
Items | PP | HC-210 | HC–190-CaO |
---|---|---|---|
Ti (°C) | 354.1 | 299. 8 | 314.9 |
Tb (°C) | 473.2 | 519.1 | 479.9 |
Tm | 434.7 | 319.4 | 328.3 |
DTGmax (wt.%/min) | 38.8 | 30.1 | 125.9 |
DTGmean (wt.%/min) | 2.2 | 2.2 | 2.1 |
Rm (wt.%) | 2.1 | 0.8 | 4.1 |
CCI (10−6, wt.%2·min−2·°C−3) | 1.4 | 1.4 | 5.7 |
CSI (104, wt.%·min−1·°C−2) | 2.2 | 2.7 | 10.5 |
Items | COD | pH | EC (ms/cm) | SP | SK | NH4+-N |
---|---|---|---|---|---|---|
PW-210 | 3841.7 | 3.7 | 1.4 | 14.4 | 379.4 | 592.2 |
PW-190-CaO | 4991.7 | 5.0 | 3.3 | 2.3 | 353.9 | 939.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-J.; Li, N.; Ni, G.-R.; Zhou, C.-H.; Yin, X.; Huang, H.-J. Recycling Pomelo Peel Waste in the Form of Hydrochar Obtained by Microwave-Assisted Hydrothermal Carbonization. Materials 2022, 15, 9055. https://doi.org/10.3390/ma15249055
Wang Y-J, Li N, Ni G-R, Zhou C-H, Yin X, Huang H-J. Recycling Pomelo Peel Waste in the Form of Hydrochar Obtained by Microwave-Assisted Hydrothermal Carbonization. Materials. 2022; 15(24):9055. https://doi.org/10.3390/ma15249055
Chicago/Turabian StyleWang, Yu-Jie, Nan Li, Guo-Rong Ni, Chun-Huo Zhou, Xin Yin, and Hua-Jun Huang. 2022. "Recycling Pomelo Peel Waste in the Form of Hydrochar Obtained by Microwave-Assisted Hydrothermal Carbonization" Materials 15, no. 24: 9055. https://doi.org/10.3390/ma15249055
APA StyleWang, Y. -J., Li, N., Ni, G. -R., Zhou, C. -H., Yin, X., & Huang, H. -J. (2022). Recycling Pomelo Peel Waste in the Form of Hydrochar Obtained by Microwave-Assisted Hydrothermal Carbonization. Materials, 15(24), 9055. https://doi.org/10.3390/ma15249055