Optimizing the Infrared Photoelectric Detection Performance of Pbs Quantum Dots through Solid-State Ligand Exchange
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of PbS Quantum Dots
2.2. Device Fabrication
2.3. Characterization
3. Results and Discussion
3.1. Microstructural Properties
3.2. Optical Properties
3.3. The Device Application
Type | Ligand | R (A/W) | D* (Jones) | Light Intensity | Reference |
---|---|---|---|---|---|
Photoconductor | Na2S | 0.95 | 2.28 × 108 (at 980 nm) | 50 mW/cm2 | This work |
Photoconductor | EDT | -- | 3.3 × 1011 (at 1060 nm) | 57 mW/cm2 | [40] |
Photodiode | TBAC | 2.0 × 10−13 | 5.6 × 1011 (at 980 nm) | 300 μW/cm2 | [41] |
Photodiode | TBAI | 0.19 | 5.44 × 1011 (at 630 nm) | 2.0 mW/cm2 | [34] |
Photoconductor | CTAB | 9.0 × 10−4 | 8.9 × 109 (at 630 nm) | 430 μW/cm2 | [42] |
Photoconductor | MPA | -- | 3.9 × 109 (at 630 nm) | 430 μW/cm2 | [42] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, K.; Zhou, W.; Ning, Z. Integrated structure and device engineering for high performance and scalable quantum dot infrared photodetectors. Small 2020, 16, 2003397. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Shi, Y.; Zhang, Z.; Zhi, R.; Yang, S.; Zou, B. Recent progress of infrared photodetectors based on lead chalcogenide colloidal quantum dots. Chin. Phys. B 2019, 28, 020701. [Google Scholar] [CrossRef]
- García de Arquer, F.P.; Armin, A.; Meredith, P.; Sargent, E.H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2017, 2, 16100. [Google Scholar] [CrossRef] [Green Version]
- Pu, Y.; Cai, F.; Wang, D.; Wang, J.X.; Chen, J.F. Colloidal synthesis of semiconductor quantum dots toward large-scale production: A review. Ind. Eng. Chem. Res. 2018, 57, 1790–1802. [Google Scholar] [CrossRef]
- Böberl, M.; Kovalenko, M.V.; Gamerith, S.; List, E.J.; Heiss, W. Inkjet-Printed Nanocrystal Photodetectors Operating up to 3 μm Wavelengths. Adv. Mater. 2007, 19, 3574–3578. [Google Scholar] [CrossRef]
- Mamiyev, Z.Q.; Balayeva, N.O. Preparation and optical studies of PbS nanoparticles. Opt. Mater. 2015, 46, 522–525. [Google Scholar] [CrossRef]
- Hines, M.A.; Scholes, G.D. Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 2003, 15, 1844–1849. [Google Scholar] [CrossRef]
- Peng, L.; Tang, J.; Zhu, M. Recent development in colloidal quantum dots photovoltaics. Front. Optoelectron. 2012, 5, 358–370. [Google Scholar] [CrossRef]
- Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; De Arquer, F.P.G.; Gatti, F.; Koppens, F.H. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368. [Google Scholar] [CrossRef]
- Konstantatos, G.; Levina, L.; Tang, J.; Sargent, E.H. Sensitive solution-processed Bi2S3 nanocrystalline photodetectors. Nano Lett. 2008, 8, 4002–4006. [Google Scholar] [CrossRef]
- Tang, J.; Kemp, K.W.; Hoogland, S.; Jeong, K.S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X.; Debnath, R.; Cha, D.; et al. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 2011, 10, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Bakueva, L.; Musikhin, S.; Hines, M.A.; Chang, T.W.; Tzolov, M.; Scholes, G.D.; Sargent, E.H. Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer. Appl. Phys. Lett. 2003, 82, 2895–2897. [Google Scholar] [CrossRef] [Green Version]
- Kagan, C.R.; Murray, C.B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 2015, 10, 1013–1026. [Google Scholar] [CrossRef] [PubMed]
- Talapin, D.V.; Murray, C.B. PbSe nanocrystal solids for n-and p-channel thin film field-effect transistors. Science 2005, 310, 86–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Gibbs, M.; Puthussery, J.; Gaik, S.; Ihly, R.; Hillhouse, H.W.; Law, M. Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. Nano Lett. 2010, 10, 1960–1969. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Su, M.S.; Ku, C.S.; Wang, S.M.; Lee, H.Y.; Wei, K.H. Ligands affect the crystal structure and photovoltaic performance of thin films of PbSe quantum dots. J. Mater. Chem. 2011, 21, 11605–11612. [Google Scholar] [CrossRef]
- Baumgardner, W.J.; Whitham, K.; Hanrath, T. Confined-but-connected quantum solids via controlled ligand displacement. Nano Lett. 2013, 13, 3225–3231. [Google Scholar] [CrossRef]
- You, H.R.; Park, J.Y.; Lee, D.H.; Kim, Y.; Choi, J. Recent research progress in surface ligand exchange of PbS quantum dots for solar cell application. Appl. Sci. 2020, 10, 975. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Qu, S.; Zeng, X.; Zhang, C.; Shi, M.; Tan, F.; Wang, Z.; Liu, J.; Hou, Y.; Teng, F.; et al. Synthesis of MDMO-PPV capped PbS quantum dots and their application to solar cells. Polymer 2008, 49, 4647–4651. [Google Scholar] [CrossRef]
- Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, K.; Sargent, E.H. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180–183. [Google Scholar] [CrossRef]
- Konstantatos, G.; Clifford, J.; Levina, L.; Sargent, E.H. Sensitive solution-processed visible-wavelength photodetectors. Nat. Photonics 2007, 1, 531–534. [Google Scholar] [CrossRef]
- Mamiyev, Z.; Balayeva, N.O. Metal Sulfide Photocatalysts for Hydrogen Generation: A Review of Recent Advances. Catalysts 2022, 12, 1316. [Google Scholar] [CrossRef]
- Kovalenko, M.V.; Scheele, M.; Talapin, D.V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 2009, 324, 1417–1420. [Google Scholar] [CrossRef] [PubMed]
- Kovalenko, M.V.; Bodnarchuk, M.I.; Zaumseil, J.; Lee, J.S.; Talapin, D.V. Expanding the chemical versatility of colloidal nanocrystals capped with molecular metal chalcogenide ligands. J. Am. Chem. Soc. 2010, 132, 10085–10092. [Google Scholar] [CrossRef]
- Gan, J.; Yu, M.; Hoye, R.L.Z.; Musselman, K.P.; Li, Y.; Liu, X.; Zheng, Y.; Zu, X.; Li, S.; MacManus-Driscoll, J.L.; et al. Defects, photophysics and passivation in Pb-based colloidal quantum dot photovoltaics. Mater. Today Nano 2021, 13, 100101. [Google Scholar] [CrossRef]
- Konstantatos, G.; Sargent, E.H. PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain. Appl. Phys. Lett. 2007, 91, 173505. [Google Scholar] [CrossRef] [Green Version]
- Lp, A.H.; Thon, S.M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Debnath, R.; Levina, L.; Rollny, L.R.; Carey, C.H.; Fischer, A.; et al. Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 2012, 7, 577–582. [Google Scholar] [CrossRef]
- Choi, J.J.; Bealing, C.R.; Bian, K.; Hughes, K.J.; Zhang, W.; Smilgies, D.M.; Hennig, R.G.; Engstrom, G.R.; Hanrath, T. Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage. J. Am. Chem. Soc. 2011, 133, 3131–3138. [Google Scholar] [CrossRef]
- Oh, S.J.; Berry, N.E.; Choi, J.H.; Gaulding, E.A.; Lin, H.; Paik, T.; Diroll, B.T.; Muramoto, S.; Murray, C.B.; Kagan, C.R. Designing high-performance PbS and PbSe nanocrystal electronic devices through stepwise, post-synthesis, colloidal atomic layer deposition. Nano Lett. 2014, 14, 1559–1566. [Google Scholar] [CrossRef]
- Saran, R.; Curry, R.J. Lead sulphide nanocrystal photodetector technologies. Nat. Photonics 2016, 10, 81–92. [Google Scholar] [CrossRef]
- Oh, S.J.; Berry, N.E.; Choi, J.H.; Gaulding, E.A.; Paik, T.; Hong, S.H.; Murray, C.B.; Kagan, C.R. Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance. ACS Nano 2013, 7, 2413–2421. [Google Scholar] [CrossRef] [PubMed]
- Pal, B.N.; Robel, I.; Mohite, A.; Laocharoensuk, R.; Werder, D.J.; Klimov, V.I. High-Sensitivity p–n Junction Photodiodes Based on PbS Nanocrystal Quantum Dots. Adv. Funct. Mater. 2012, 22, 1741–1748. [Google Scholar] [CrossRef]
- Chuang, C.H.M.; Brown, P.R.; Bulović, V.; Bawendi, M.G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Y.; Ren, Z.; Zhang, A.; Mao, P.; Li, H.; Zhong, X.; Li, W.; Yang, S.; Wang, J. Hybrid organic/PbS quantum dot bilayer photodetector with low dark current and high detectivity. Adv. Funct. Mater. 2018, 28, 1706690. [Google Scholar] [CrossRef]
- Xu, Y.; Lin, Q. Photodetectors based on solution-processable semiconductors: Recent advances and perspectives. Appl. Phys. Rev. 2020, 7, 011315. [Google Scholar] [CrossRef]
- Gong, X.; Tong, M.; Xia, Y.; Cai, W.; Moon, J.S.; Cao, Y.; Yu, G.; Shieh, C.-L.; Nilsson, B.; Heeger, A.J. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 2009, 325, 1665–1667. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Huang, W.; Yu, J. Realization of high detectivity organic ultraviolet photodetectors by modifying polymer active layer. Org. Electron. 2014, 15, 3000–3005. [Google Scholar] [CrossRef]
- Guglietta, G.W.; Diroll, B.T.; Gaulding, E.A.; Fordham, J.L.; Li, S.; Murray, C.B.; Baxter, J.B. Lifetime, mobility, and diffusion of photoexcited carriers in ligand-exchanged lead selenide nanocrystal films measured by time-resolved terahertz spectroscopy. ACS Nano 2015, 9, 1820–1828. [Google Scholar] [CrossRef]
- Liljeroth, P.; Overgaag, K.; Urbieta, A.; Grandidier, B.; Hickey, S.G.; Vanmaekelbergh, D. Variable orbital coupling in a two-dimensional quantum-dot solid probed on a local scale. Phys. Rev. Lett. 2006, 97, 096803. [Google Scholar] [CrossRef] [Green Version]
- Osedach, T.P.; Zhao, N.; Geyer, S.M.; Chang, L.Y.; Wanger, D.D.; Arango, A.C.; Bawendi, M.C.; Bulović, V. Interfacial recombination for fast operation of a planar organic/QD infrared photodetector. Adv. Mater. 2010, 22, 5250–5254. [Google Scholar] [CrossRef]
- Mi, L.; Wang, H.; Zhang, Y.; Yao, X.; Chang, Y.; Li, G.; Jiang, Y. High performance visible–near-infrared PbS-quantum-dots/indium Schottky diodes for photodetectors. Nanotechnology 2016, 28, 055202. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Luo, M.; Hu, L.; Zhou, Y.; Jiang, S.; Song, H.; Ye, R.; Chen, J.; Gao, L.; Tang, J. Flexible lead sulfide colloidal quantum dot photodetector using pencil graphite electrodes on paper substrates. J. Alloys Compd. 2014, 596, 73–78. [Google Scholar] [CrossRef]
- Vanmaekelbergh, D.; Liljeroth, P. Electron-conducting quantum dot solids: Novel materials based on colloidal semiconductor nanocrystals. Chem. Soc. Rev. 2005, 34, 299–312. [Google Scholar] [CrossRef] [PubMed]
Device | Iphoto (μA) | R (mA/W) | D* (Jones) |
---|---|---|---|
PbS-EDT | 36.1 | 0.72 | 2.01 × 107 |
PbS-TBAI | 95.9 | 1.94 | 1.53 × 108 |
PbS-CTAB | 141.5 | 2.83 | 2.42 × 108 |
PbS-Na2S | 4780 | 95.6 | 2.28 × 108 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Liu, H.; Wen, S.; Du, Y.; Gao, F. Optimizing the Infrared Photoelectric Detection Performance of Pbs Quantum Dots through Solid-State Ligand Exchange. Materials 2022, 15, 9058. https://doi.org/10.3390/ma15249058
Yang M, Liu H, Wen S, Du Y, Gao F. Optimizing the Infrared Photoelectric Detection Performance of Pbs Quantum Dots through Solid-State Ligand Exchange. Materials. 2022; 15(24):9058. https://doi.org/10.3390/ma15249058
Chicago/Turabian StyleYang, Mei, Huan Liu, Shuai Wen, Yuxuan Du, and Fei Gao. 2022. "Optimizing the Infrared Photoelectric Detection Performance of Pbs Quantum Dots through Solid-State Ligand Exchange" Materials 15, no. 24: 9058. https://doi.org/10.3390/ma15249058
APA StyleYang, M., Liu, H., Wen, S., Du, Y., & Gao, F. (2022). Optimizing the Infrared Photoelectric Detection Performance of Pbs Quantum Dots through Solid-State Ligand Exchange. Materials, 15(24), 9058. https://doi.org/10.3390/ma15249058