The Influence of Co Addition on the Structure and Mechanical Properties of Tungsten Heavy Alloys
Abstract
:1. Introduction
2. Experimental Procedure
3. Results
3.1. Results of the Density Measurements
3.2. Microstructure Observations
3.2.1. Results of the Metallographic Observation
3.2.2. Results of the Qualitative Assessment of the Microstructure
3.2.3. Fractographic Investigations
3.3. Chemical Analysis
3.4. Results of the X-ray Diffractometry Analysis
3.5. Results of Mechanical Testing
3.6. Microhardness Testing
4. Discussion
5. Conclusions
- The parameters of the liquid phase sintering process allow for the obtaining of a homogeneous, non-porous material with an actual density comparable to the theoretical density.
- The applied parameters of heat treatment consisting of annealing and cooling in water make it possible to change the properties of the WHA material from brittle to elastic–plastic.
- Heat treatment increases the strength, plastic properties, hardness, and Young’s modulus.
- Tungsten heavy alloys of Co to Ni with proportions of 3:7, 2:8, and 1:9 have similar mechanical properties.
- An increase in Co concentration causes brittleness of alloys, which is especially visible in the case of WNi5Co5.
- The brittleness is caused by the formation of the Ni2Co3W intermetallic phase, which is probably very close to the Co7W6 phase existing in the Co-W binary equilibrium diagram (μ phase). It can be suspected that the Ni2Co3W phase is really the (Co,Ni)7W6 intermetallic phase. This phase appears as a needle in the matrix and forms a thin shell on tungsten grains.
- This intermetallic W-rich phase is very hard, which was found by microhardness measurements of the matrix that showed that its hardness was equal to 1000 HV0.025 and was double of that where the intermetallic phase did not exist.
- The deviation from the equiaxials of tungsten grains is related to their accommodation during sintering in the process of contact flattening.
- Increasing the proportion of cobalt to nickel increases the concentration of tungsten in the matrix.
- Increasing the proportion of cobalt to nickel increases the parameter of the lattice constant of the matrix.
- Heat treatment lowers the tungsten concentration in the matrix, which results in a reduction of the lattice constant parameter of the matrix.
- Among the five alloys studied, two of them (WNi6Co4 and WNi5Co5) are too brittle to be promising for military applications, where extremally high fracture toughness is needed.
- Three alloys, namely, WNi9Co1, WNi8Co2, and WNi7Co3, are planned for further testing involving heat treating and cold working.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magier, M.; Nowak, A.; Merda, T.; Żochowski, P. Analysis Of Ballistic Characteristics Of 16th Century Arquebuses Used In Battle Of Pavia. Probl. Tech. Uzbroj. 2017, 143, 71–84. [Google Scholar] [CrossRef]
- German, R.M. Critical Developments in Tungsten Heavy Alloys. In Proceedings of the 1st International Conference on Tungsten Tungsten Alloys, Arlington, VA, USA, 15–18 November 1992; pp. 3–13. [Google Scholar]
- Lanz, W.; Odermatt, W.; Weihrauch, G. Kinetic energy projectiles: Development history, state of the art, trends. In Proceedings of the 19th International Symposium of Ballistics, Interlaken, Switzerland, 7–11 May 2001. [Google Scholar]
- Magness, L.S.; Kapoor, D. Flow-softening tungsten composites for kinetic energy penetrator applications. In Proceedings of the 2nd International Conference on Tungsten and Refractory Metals, McLean, VA, USA, 17–19 October 1994. [Google Scholar]
- Kruszka, L.; Janiszewski, J.; Grązka, M. Experimental and Numerical Analysis of Al6063 Duralumin Using Taylor Impact Test; EPJ Web of Conference; EDP Sciences: Les Ulis, France, 2012; Volume 26, p. 201201062. [Google Scholar]
- Hauver, G.E.; Melani, A. Behavior of Segmented Rods during Penetration; Technical Report BRL-TR-3129; Army Ballistic Research Lab Aberdeen Proving Ground: Aberdeen, MD, USA, 1990. [Google Scholar]
- Kennedy, C.; Murr, L.E. Comparison of tungsten heavy-alloy rod penetration into ductile and hard metal targets: Microstructural analysis and computer simulations. Mater. Sci. Eng. A 2002, 325, 131–143. [Google Scholar] [CrossRef]
- Kumbhar, K.; Senthil, P.P.; Gogia, A.K. Microstructural observations on the terminal penetration of long rod projectile. Def. Technol. 2017, 6, 413–421. [Google Scholar] [CrossRef]
- Yadav, S.; Ramesh, K.T. The dynamic behavior of a tungsten-hafnium composite for kinetic energy penetrator applications. In Proceedings of the 4th International Conference on Tungsten Refractory Metals and Alloys, Lake Buena Vista, FL, USA, 17–19 November 1997; pp. 111–117. [Google Scholar]
- Magier, M. The role of adiabatic shear bands effect in penetration process. Probl. Tech. Uzbroj. 2018, 147, 7–17. [Google Scholar] [CrossRef]
- Kaczorowski, M.; Nowak, W.; Skoczylas, P.; Rafalski, M. Zjawiska występujące w rdzeniach pocisków podczas penetracji płyty, Materiały konferencyjne, wydanie specjalne XVI konferencji naukowo-technicznej. Uzbrojenie 2007, 2007, 213–219. [Google Scholar]
- Arnold, W. Tungsten heavy alloys for multiple impact applications. AIP Conf. Proc. 2004, 706, 1319. [Google Scholar]
- Lassner, E.; Schubert, W.D. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds; Springer: Boston, MA, USA, 1999. [Google Scholar]
- Majewski, T. Technologiczne Uwarunkowania Właściwości Użytkowych Spieków Ciężkich W-(Fe, Ni, Re); Wojskowa Akademia Techniczna: Warszawa, Poland, 2013. [Google Scholar]
- Motyl, K.; Magier, M.; Borkowski, J.; Zygmunt, B. Theoretical and experimental research of anti-Tank kinetic penetrator ballistics. Bull. Pol. Acad. Sci. Tech. Sci. 2017, 65, 399–404. [Google Scholar] [CrossRef]
- Bless, S.J.; Tarcza, K.; Chau, R.; Taleff, E.; Persad, C. Dynamic fracture of tungsten heavy alloys. Int. J. Impact Eng. 2006, 33, 100–108. [Google Scholar] [CrossRef]
- Esquivel, E.V.; Murr, L.E.; Trillo, E.A. Comparison of flow and shear band structures in oriented, columnar tungsten, single crystal tungsten-tantalum and sintered tungsten heavy alloy ballistic penetrators. Powder Metall. 2003, 46, 137–142. [Google Scholar] [CrossRef]
- Das, J.; Appa Rao, G.; Pabi, S.K. Deformation behaviour of a newer tungsten heavy alloy. Mater. Sci. Eng. A 2011, 528, 6235–6247. [Google Scholar] [CrossRef]
- German, R.M. Liquid Phase Sintering; Plenum Press: Seoul, Republic of Korea, 1985. [Google Scholar]
- German, R.M. Sintered tungsten heavy alloys: Review of microstructure, strength, densification and distortion. Int. J. Refract. Met. Hard Mater. 2022, 108, 105940. [Google Scholar] [CrossRef]
- Edmonds, D.V. Structure-property relationships in sintered heavy alloys. Refract. Met. Hard Mater. 1991, 10, 15–26. [Google Scholar] [CrossRef]
- Rabin, B.H.; Bose, A.; German, R.M. Characteristics of Liquid Phase Sintered Tungsten Heavy Alloys. Int. J. Powder Met. 1989, 25, 21–27. [Google Scholar]
- Bose, A.; German, R.M. Sintering atmosphere effects on tensile properties of heavy alloys. Met. Trans. A Phys. Met. Mater. Sci. 1988, 19, 66–77. [Google Scholar] [CrossRef]
- Kunčická, L.; Kocich, R.; Klečková, Z. Effects of Sintering Conditions on Structures and Properties of Sintered Tungsten Heavy Alloy. Materials 2020, 13, 2338. [Google Scholar] [CrossRef]
- Panchal, A.; Venugopal Reddy, K.; Azeem, P.A.; Sarkar, R.; Paradkar, A.; Nandy, T.K.; Singh, A.K. Effect of Ni/Fe ratio on microstructure, tensile flow and work hardening behaviour of tungsten heavy alloys in heat treated and swaged conditions. Philos. Mag. 2021, 101, 211–241. [Google Scholar] [CrossRef]
- Satyanarayana, P.V.; Blessto, B.; Sokkalingam, R.; Rambabu, C.; Sivaprasad, K. Effect of Fe Addition to Binder Phase on Mechanical Properties of Tungsten Heavy Alloy. Trans. Indian Inst. Met. 2020, 73, 863–871. [Google Scholar] [CrossRef]
- Skoczylas, P.; Goroch, O.; Gulbinowicz, Z.; Barcz, K.; Kaczorowski, M. Research into the Production of Tungsten Heavy Alloys with Specific Mechanical Properties, Problems of Mechatronics. Armament Aviat. Saf. Eng. 2019, 10, 23–36. [Google Scholar]
- Skoczylas, P.; Kaczorowski, M. The influence of cyclic sintering on the structure and mechanical properties of Tungsten Heavy Alloy. Arch. Foundry Eng. 2016, 16, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Kaczorowski, M.; Skoczylas, P.; Krzyńska, A.; Kaniewski, J. The strengthening of weight heavy alloys during heat treatment. Arch. Foundry Eng. 2012, 12, 75–80. [Google Scholar] [CrossRef]
- Das, J.; Ravi Kiran, U.; Chakraborty, A.; Eswara, N. Hardness and tensile properties of tungsten based heavy alloys prepared by liquid phase sintering technique. Int. J. Refract. Met. Hard Mater. 2009, 27, 577–583. [Google Scholar] [CrossRef]
- Skoczylas, P.; Gulbinowicz, Z.; Goroch, O. Microstructure and Properties of Tungsten Heavy Alloy Connections Formed during Sintering with the Participation of the Liquid Phase. Materials 2020, 13, 4965. [Google Scholar] [CrossRef]
- Kaczorowski, M.; Skoczylas, P. Kształtowanie struktury i właściwości wolframowych stopów ciężkich o przeznaczeniu specjalnym, Problemy Mechatroniki. Uzbroj. Lot. Inżynieria Bezpieczeństwa 2015, 6, 27–40. [Google Scholar]
- Ravi Kiran, U.; Panchal, A.; Prem Kumar, M.; Sankaranarayana, M.; Nageswara Rao, G.V.S.; Nandy, T.K. Refractory metal alloying: A new method for improving mechanical properties of tungsten heavy alloys. J. Alloys Compd. 2017, 709, 609–619. [Google Scholar] [CrossRef]
- Yu, Y.; Erde, W. Microstructure and properties of liquid phase sintered tungsten heavy alloys by using ultra-fine tungsten powders. Trans. Nonferrous Met. Soc. China 2004, 14, 912–917. [Google Scholar]
- Natarajan, S.; Gopalan, V.; Rajan, R.A.A.; Jen, C.-P. Effect of Rare Earth Metals (Y, La) and Refractory Metals (Mo, Ta, Re) to Improve the Mechanical Properties ofW–Ni–Fe Alloy—A Review. Materials 2021, 14, 1660. [Google Scholar] [CrossRef]
- German, R.M.; Bose, A.; Kemp, P.B.; Zhang, H. Additive Effect on the Microstructure and Properties of Tungsten Heavy Alloy Composites. In Advances in Powder Metallurgy; Basbarre, T.G., Jandeska, W.F., Eds.; Metal Powder Industries Federation: Princeton, NJ, USA, 1989; Volume 2, pp. 401–414. [Google Scholar]
- Liu, W.; Ma, Y.; Huang, B. Influence of minor elements additions on microstructure and properties of 93W–4.9Ni–2.1Fe alloys. Bull. Mater. Sci. 2008, 31, 1–6. [Google Scholar] [CrossRef]
- Bose, A.; Sadangi, R.; German, R.M. A review on alloying in tungsten heavy alloys. Suppl. Proc. Mater. Process. Interfaces 2012, 1, 453–465. [Google Scholar]
- Tan, X.; Leng, B.; Qiu, S. Influences of submicrometer Ta and Co dopants on microstructure and properties of tungsten heavy alloys. Trans. Nonferrous Met. Soc. China 2004, 14, 747–750. [Google Scholar]
- Doepker, S.P.; Cuddy, L.J. Aging studies and the associated changes in the microstructure of two W-Ni-Co alloys. In Tungsten and Refractory Metals-1994, Proceedings of the International Conference on Tungsten and Refractory Metals; APMI International: Princeton, NJ, USA, 1995; pp. 93–100. [Google Scholar]
- Prabhu, G.; Kumar, R.A.; Nandy, T.K. Tungsten heavy alloys with two-phase matrix. Def. Sci. J. 2021, 71, 564–571. [Google Scholar]
- Penrice, T.W.; Bost, J. High Density Tungsten-Nickel-Iron-Cobalt Alloys Heaving Improved Hardness and Method for Making Same. US Patent 4762559, 9 August 1988. [Google Scholar]
- Kiran, U.R.; Rao, A.S.; Sankaranarayana, M.; Nandy, T.K. Swaging and heat treatment studies on sintered 90W-6Ni-2Fe-2Co tungsten heavy alloy. Int. J. Refract. Met. Hard Mater. 2012, 33, 113–121. [Google Scholar] [CrossRef]
- Sunwoo, A.; Groves, S.; Goto, D. Effect of matrix alloy and cold swaging on micro-tensile properties of tungsten heavy alloys. Mater. Lett. 2006, 60, 321–325. [Google Scholar] [CrossRef]
- Skoczylas, P.; Goroch, O.; Gulbinowicz, Z.; Penkul, A. The Effect of Cold Swaging of Tungsten Heavy Alloy with the Composition W91-6Ni-3Co on the Mechanical Properties. Materials 2021, 14, 7300. [Google Scholar] [CrossRef]
- Hyung, B.W.; Hee, H.M.; Pyo, K.E. Heat treatment behavior of tungsten heavy alloy. Solid State Phenom. 2006, 118, 35–40. [Google Scholar]
- Katavic, B.; Odanovic, Z.; Burzi, M. Investigation of the rotary swaging and heat treatment on the behavior of W- and- phase in PM 92.5W-%-Ni-2.5Fe-0.26Co heavy alloy. Mater. Sci. Eng. A 2008, 492, 337–345. [Google Scholar] [CrossRef]
- Katavić, B.; Nikaćević, M.; Odanović, Z. Effect of cold swaging and heat treatment on properties of the P/M 91W-6Ni-3Co heavy alloy. Sci. Sinter. 2008, 40, 319–331. [Google Scholar] [CrossRef]
- Okamoto, H.; Massalski, T.B. Binary Alloy Phase Diagrams; ASM International: Materials Park, OH, USA, 1990. [Google Scholar]
- Murray, J.L.; Bennett, L.H.; Baker, H.; Massalski, T.B. Binary Alloy Phase Diagrams; American Society for Metals: Metals Park, OH, USA, 1986. [Google Scholar]
- Senguptaa, P.; Mehera, P.; Panigrahia, A.; Mandala, S.; Basua, S.; Debataa, M. Microstructure, distortion characteristics and mechanical behaviour of NiB modified 90W-6Ni-4Co heavy alloys. J. Alloys Compd. 2021, 887, 161404. [Google Scholar] [CrossRef]
Alloy Designation | Chemical Composition (wt. %) | Co:Ni Ratio | |||||
---|---|---|---|---|---|---|---|
W | Ni | Co | |||||
wt. % | at. % | wt. % | at. % | wt. % | at.% | ||
WNi9Co1 | 92 | 78.6 | 7.2 | 19.3 | 0.8 | 2.1 | 1:9 = 0.111 |
WNi8Co2 | 6.4 | 17.1 | 1.6 | 4.3 | 2:8 = 0.250 | ||
WNi7Co3 | 5.6 | 15.0 | 2.4 | 6.4 | 3:7 = 0.429 | ||
WNi6Co4 | 4.8 | 12.8 | 3.2 | 8.6 | 4:6 = 0.667 | ||
WNi5Co5 | 4.0 | 10.7 | 4.0 | 10.7 | 5:5 = 1.000 |
Value Analysed | Powder | ||
---|---|---|---|
Tungsten | Nickel | Cobalt | |
Grain size (FSSS) (µm) | 3.2 | 4.65 | 1.35 |
Bulk density (mg/m3) | 5.34 | 2.22 | 1.43 |
Specific area BET (m2/g) | 0.26 | 0.36 | 0.79 |
Particle size distribution (µm) | |||
D (0.1) | 3.14 | 4.58 | 3.48 |
D (0.5) | 9.53 | 11.89 | 8.04 |
D (0.9) | 28.4 | 31.88 | 16.37 |
Alloy Designation | Co:Ni Ratio | Density (mg/m3) | |
---|---|---|---|
Theoretical (Calculated) | Measured | ||
WNi9Co1 | 1:9 | 17.65 | 17.63 |
WNi8Co2 | 2:8 | 17.62 | |
WNi7Co3 | 3:7 | 17.60 | |
WNi6Co4 | 4:6 | 17.62 | |
WNi5Co5 | 5:5 | 17.63 |
Co:Ni Ratio | Participation of Tungsten Grains in the Structure | Equivalent Diameter of Tungsten Grains | Elongation of Tungsten Grains | Contiguity | ||||
---|---|---|---|---|---|---|---|---|
(%) | d2 (µm) | dmax/dmin | ||||||
Surface | ||||||||
P 1 | R 2 | P | R | P | R | P | R | |
1:9 | 80.8 | 81.1 | 19.3 | 21.0 | 1.30 | 1.30 | 0.09 | 0.08 |
2:8 | 80.9 | 81.3 | 21.8 | 21.2 | 1.35 | 1.29 | 0.12 | 0.14 |
3:7 | 80.3 | 81.8 | 20.5 | 21.2 | 1.31 | 1.28 | 0.10 | 0.14 |
4:6 | 80.8 | 82.3 | 22.7 | 20.5 | 1.34 | 1.30 | 0.16 | 0.13 |
5:5 | 79.6 | 79.0 | 21.8 | 18.4 | 1.40 | 1.30 | 0.15 | 0.13 |
Co:Ni Ratio | The State | Area of Analysis | Element Concentration | |||||
---|---|---|---|---|---|---|---|---|
W | Ni | Co | ||||||
wt. (%) | at. (%) | wt. (%) | at. (%) | wt. (%) | at. (%) | |||
1:9 | As sintered | matrix | 41.35 | 18.38 | 52.50 | 73.09 | 6.16 | 8.54 |
2:8 | 41.79 | 18.66 | 46.68 | 65.28 | 11.54 | 16.06 | ||
3:7 | 43.03 | 19.45 | 40.20 | 56.90 | 16.78 | 23.66 | ||
4:6 | 43.47 | 19.74 | 34.02 | 48.37 | 22.53 | 31.9 | ||
5:5 | 43.95 | 20.06 | 29.75 | 42.53 | 26.30 | 37.43 | ||
W-rich phase | 73.46 | 46.98 | 10.65 | 21.33 | 15.90 | 31.70 | ||
1:9 | Annealed 3 h at 1200 °C and water cooled | matrix | 40.15 | 17.65 | 53.91 | 74.21 | 5.95 | 8.15 |
2:8 | 40.98 | 18.16 | 47.37 | 65.73 | 11.66 | 16.11 | ||
3:7 | 41.26 | 18.34 | 41.13 | 57.25 | 17.61 | 24.41 | ||
4:6 | 40.93 | 18.14 | 35.49 | 49.26 | 23.58 | 32.60 | ||
5:5 | 40.09 | 17.63 | 33.85 | 46.62 | 26.08 | 35.76 | ||
W-rich phase | 73.71 | 47.29 | 10.43 | 20.95 | 15.87 | 31.77 |
Alloy Designation | Lattice Constant (nm) | |
---|---|---|
As Sintered | Heat Treated 3 h at 1200 °C and Water Cooled | |
WNi9Co1 | 0.3598 | 0.3600 |
WNi8Co2 | 0.3603 | 0.3599 |
WNi7Co3 | 0.3609 | 0.3602 |
WNi6Co4 | 0.3607 | 0.3609 |
WNi5Co5 | 0.3612 | 0.3613 |
Co:Ni Ratio | Mechanical Properties | Hardenss | Young’s Modulus | ||
---|---|---|---|---|---|
Rm (MPa) | Rp 0.2 (MPa) | A5 (%) | HRC | GPa | |
After sintering | |||||
1:9 | 626 ± 18 | 0 | 0 | 30.0 | 276 ± 13 |
2:8 | 650 ± 29 | 0 | 0 | 30.0 | 285 ± 11 |
3:7 | 663 ± 9 | 0 | 0 | 30.0 | 282 ± 9 |
4:6 | 773 ± 11.5 | 0 | 0 | 31.0 | 275 ± 14 |
5:5 | 262 ± 10 | 0 | 0 | 34.0 | 265 ± 15 |
Heat treated 3 h at a temperature of 1200 °C and water cooled | |||||
1:9 | 998 ± 14 | 676 ± 26 | 25.3 ± 0.6 | 31.0 | 278 ± 12 |
2:8 | 1020 ± 23 | 725 ± 29 | 25.0 ± 1.5 | 30.5 | 286 ± 14 |
3:7 | 1022 ± 35 | 668 ± 42 | 27.2 ± 0.8 | 30.5 | 292 ± 16 |
4:6 | 852 ± 4.5 | 697 ± 32 | 6.5 ± 1 | 30.0 | 285 ± 12 |
5:5 | 343 ± 20 | 0 | 0 | 37.0 | 274 ± 7 |
Co:Ni Ratio | Hardness | |||
---|---|---|---|---|
As Sintered | Heat Treated 3 h at a Temperature of 1200 °C | |||
Tungsten Grain | Matrix | Tungsten Grain | Matrix | |
1:9 | 396 ± 35 | 370 ± 42 | 390 ± 37 | 402 ± 11 |
2:8 | 400 ± 15 | 367 ± 34 | 400 ± 25 | 358 ± 16 |
3:7 | 415 ± 23 | 410 ± 26 | 410 ± 15 | 390 ± 25 |
4:6 | 407 ± 19 | 377 ± 26 | 419 ± 17 | 383 ± 34 |
5:5 | 452 ± 24 | 490 ± 18 | 483 ± 26 | 497 ± 36 |
W-rich phase | 936 ± 90 | 1030 ± 130 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skoczylas, P.; Kaczorowski, M. The Influence of Co Addition on the Structure and Mechanical Properties of Tungsten Heavy Alloys. Materials 2022, 15, 9064. https://doi.org/10.3390/ma15249064
Skoczylas P, Kaczorowski M. The Influence of Co Addition on the Structure and Mechanical Properties of Tungsten Heavy Alloys. Materials. 2022; 15(24):9064. https://doi.org/10.3390/ma15249064
Chicago/Turabian StyleSkoczylas, Paweł, and Mieczysław Kaczorowski. 2022. "The Influence of Co Addition on the Structure and Mechanical Properties of Tungsten Heavy Alloys" Materials 15, no. 24: 9064. https://doi.org/10.3390/ma15249064
APA StyleSkoczylas, P., & Kaczorowski, M. (2022). The Influence of Co Addition on the Structure and Mechanical Properties of Tungsten Heavy Alloys. Materials, 15(24), 9064. https://doi.org/10.3390/ma15249064