Characterization and In Vitro Biocompatibility of Two New Bioglasses for Application in Dental Medicine—A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation and Characterizations of the BGs
2.3. In Vitro Evaluation of Bioactivity
3. pH and Zeta Potential Measurement
3.1. Weight Loss and In Vitro Release of Calcium Ions
3.2. Calcium Ion Detection by a Potentiometric Method
3.3. SEM Analysis of BGs
4. In Vitro Evaluation of BGs Toxicity
4.1. Cell Cultures and Preparation of Sample BGs Extract
4.2. Cell Viability Assay
4.3. Preparation of Cell Lysates
4.4. Lactate Dehydrogenase (LDH) and Oxidative Stress Assessment
4.5. Evaluation of Transcription Factors and DNA Lesions
5. Statistical Analysis
6. Results
6.1. XPS Measurements and X-ray Diffraction
6.2. Bioactivity Assay of BGs
6.3. SEM Analysis of BGs
7. In Vitro Toxicity
7.1. Cell Viability Tests
7.2. LDH Activity and Oxidative Stress Assessment
7.3. Evaluation of Transcription Factors and DNA Lesions
8. Discussion
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hench, L.L.; Hench, J.W.; Greenspan, D.C. Bioglass: A short history and bibliography. J. Aust. Ceram. Soc. 2004, 40, 1–42. [Google Scholar]
- Khalid, M.D.; Khurshid, Z.; Zafar, M.S.; Farooq, I.; Khan, R.S.; Najmi, A. Bioactive Glasses and their Applications in Dentistry. J. Pak. Dent. Assoc. 2017, 26, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Baino, F.; Hamzehlou, S.; Kargozar, S. Bioactive Glasses: Where Are We and Where Are We Going? J. Funct. Biomater. 2018, 9, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, J.M.F.; Rebelo, A. The key Features expected from a Perfect Bioactive Glass—How Far we still are from an Ideal Composition? Biomed. J. Sci. Tech. Res. 2017, 1, 4–7. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, V.; Lakshmi, T. Bioglass: A novel biocompatible innovation. J. Adv. Pharm. Technol. Res. 2013, 4, 78–83. [Google Scholar] [CrossRef]
- Nandi, S.K.; Mahato, A.; Kundu, B.; Mukherjee, P. Doped Bioactive Glass Materials in Bone Regeneration. In Advanced Techniques in Bone Regeneration; Zorzi, A.R., de Miranda, J.B., Eds.; IntechOpen: London, UK, 2016; pp. 275–328. [Google Scholar]
- Skallevold, H.E.; Rokaya, D.; Khurshid, Z.; Zafar, M.S. Bioactive Glass Applications in Dentistry. Int. J. Mol. Sci. 2019, 20, 5960. [Google Scholar] [CrossRef] [Green Version]
- Das, B.C.; Thapa, P.; Karki, R.; Schinke, C.; Das, S.; Kambhampati, S.; Banerjee, S.K.; Van Veldhuizen, P.; Verma, A.; Weiss, L.M.; et al. Boron chemicals in diagnosis and therapeutics. Futur. Med. Chem. 2013, 5, 653–676. [Google Scholar] [CrossRef] [Green Version]
- Decker, S.; Arango-Ospina, M.; Rehder, F.; Moghaddam, A.; Simon, R.; Merle, C.; Renkawitz, T.; Boccaccini, A.R.; Westhauser, F. In vitro and in ovo impact of the ionic dissolution products of boron-doped bioactive silicate glasses on cell viability, osteogenesis and angiogenesis. Sci. Rep. 2022, 12, 1–14. [Google Scholar] [CrossRef]
- Rehder, D. Perspectives for vanadium in health issues. Futur. Med. Chem. 2016, 8, 325–338. [Google Scholar] [CrossRef]
- Cortizo, A.M.; Ruderman, G.; Mazzini, F.N.; Molinuevo, M.S.; Moligner, I.G. Novel vanadium-loaded ordered collagen scafold promotes ostechondral differentiation of bone marrow progenitor cells. Int. J. Biomater. 2016, 2016, 1486350. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Wang, H.; Zhao, S.; Zhou, N.; Li, L.; Huang, W.; Wang, D.; Zhang, C. In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing. Mater. Sci. Eng. C 2016, 60, 437–445. [Google Scholar] [CrossRef]
- Olteanu, D.; Filip, A.; Socaci, C.; Biris, A.R.; Filip, X.; Coros, M.; Rosu, M.C.; Pogacean, F.; Alb, C.; Baldea, I.; et al. Cytotoxicity assessment of graphene-based nanomaterials on human dental follicle stem cells. Colloids Surf. B Biointerfaces 2015, 136, 791–798. [Google Scholar] [CrossRef]
- Baldea, I.; Olteanu, D.E.; Bolfa, P.; Ion, R.M.; Decea, N.; Cenariu, M.; Banciu, M.; Sesarman, A.V.; Filip, A.G. Efficiency of photodynamic therapy on WM35 melanoma with synthetic porphyrins: Role of chemical structure, intracellular targeting and antioxidant defense. J. Photochem. Photobiol. B Biol. 2015, 151, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Krieg, A.F.; Rosenblum, L.J.; Henry, J.B. Lactate dehydrogenase isoenzymes a comparison of pyruvate-to-lactate and lactate-to-pyruvate assays. Clin. Chem. 1967, 13, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Dos, S.; Bezerra, C.; Valerio, M.E.G. Structural and optical study of CaF2 nanoparticles produced by microwave-assisted hy-drothermal method. Phys. B Condens. Matter 2016, 501, 106–112. [Google Scholar]
- Filip, G.A.; Achim, M.; Miclaus, M.O.; Cristea, C.; Melinte, G.; Gheban, B.; Munteanu, D.M.; Cadar, O.; Simon, I.; Pana, O.; et al. Design, in vitro bioactivity and in vivo influence on oxidative stress and matrix metallo-proteinases of bioglasses in experimental skin wound. J. Trace Elem. Med. Biol. 2021, 68, 126846. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Rahaman, M.N.; Fu, H.; Liu, X. Silicate, borosilicate and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. Preparation and in vitro degradation. J. Biomed. Mater. Res. A 2010, 95, 164–171. [Google Scholar] [CrossRef]
- Kumari, C.V.; Kumar, V.R.; Sobhanachalam, P.; Rao, P.V.; Baskaran, G.S.; Veeraiah, N. In vitro degradation studies on bio-active calcium fluoroborophosphate glasses mixed with some modifier oxides-influence of therapeutically active vanadium ions. Mater. Chem. Phys. 2018, 205, 376–390. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Büttner, T.; Pacheco, V.M.; Boccaccini, A.R. Boron-containing bioactive glasses in bone and soft tissue engineering. J. Eur. Ceram. Soc. 2018, 38, 855–869. [Google Scholar] [CrossRef]
- Baino, F.; Fiorilli, S.; Vitale-Brovarone, C. Bioactive glass-based biomaterials with hierarchical porosity for medical applications: Review of recent advances. Acta Biomater. 2016, 42, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Pizorno, L. Nothing boring about boron. Integr. Med. 2015, 14, 35–48. [Google Scholar]
- Ojansivu, M.; Mishra, A.; Vanhatupa, S.; Juntunen, M.; Larionova, A.; Massera, J.; Miettinen, S. The effect of S53P4-based borosilicate glasses and glass dissolution products on the osteogenic commitment of human adipose stem cells. PLoS ONE 2018, 13, e0202740. [Google Scholar] [CrossRef] [PubMed]
- Hakki, S.S.; Bozkurt, B.S.; Hakki, E.E. Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). J. Trace Elements Med. Biol. 2010, 24, 243–250. [Google Scholar] [CrossRef]
- Rad, R.M.; Alshemary, A.Z.; Evis, Z.; Keskin, D.; Altunbaş, K.; Tezcaner, A. Structural and biological assessment of boron doped bioactive glass nanoparticles for dental tissue applications. Ceram. Int. 2018, 44, 9854–9864. [Google Scholar] [CrossRef]
- Wörle-Knirsch, J.M.; Kern, K.; Schleh, C.; Adelhelm, C.; Feldmann, C.; Krug, H.F. Nanoparticulate Vanadium Oxide Potentiated Vanadium Toxicity in Human Lung Cells. Environ. Sci. Technol. 2006, 41, 331–336. [Google Scholar] [CrossRef]
- Zwolak, I. Increased Cytotoxicity of Vanadium to CHO-K1 Cells in the Presence of Inorganic Selenium. Bull. Environ. Contam. Toxicol. 2015, 95, 593–598. [Google Scholar] [CrossRef] [Green Version]
- Krifka, S.; Seidenader, C.; Hiller, K.-A.; Schmalz, G.; Schweikl, H. Oxidative stress and cytotoxicity generated by dental composites in human pulp cells. Clin. Oral Investig. 2011, 16, 215–224. [Google Scholar] [CrossRef]
- Celok, N.; Binnetoglu, D.; Ilday, O.; Hamcimuftuoglu, A.; Seven, N. The cytotoxic and oxidative effects of restorative materials in cultured human fibroblasts. Drug Chem. Toxicol. 2021, 44, 502–507. [Google Scholar] [CrossRef]
- Mouthuy, P.-A.; Snelling, S.J.; Dakin, S.G.; Milković, L.; Gašparović, A.; Carr, A.J.; Žarković, N. Biocompatibility of implantable materials: An oxidative stress viewpoint. Biomaterials 2016, 109, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol. Sci. 2017, 38, 592–607. [Google Scholar] [CrossRef] [PubMed]
- Niki, E. Lipid peroxidation: Physiological levels and dual biological effects. Free. Radic. Biol. Med. 2009, 47, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Marrocco, I.; Altieri, F.; Peluso, I. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxidative Med. Cell. Longev. 2017, 2017, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Taso, E.; Stefanovic, V.; Stevanovic, I.; Vojvodic, D.; Topic, A.; Petkovic-Curcin, A.; Obradovic-Djuricic, K.; Markovic, A.; Djukic, M.; Vujanovic, D. Influence of Dental Restorations on Oxidative Stress in Gingival Crevicular Fluid. Oxidative Med. Cell. Longev. 2018, 2018, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Aureliano, M. Decavanadate and oxovanadates: Oxometales with many biological activities. J. Inorg. Biochem. 2009, 103, 536–546. [Google Scholar] [CrossRef]
- Soares, S.S.; Martins, H.; Duarte, R.O.; Moura, J.J.G.; Coucelo, J.; Gutiérrez-Merino, C.; Aureliano, M. Vanadium distribution, lipid peroxidation and oxidative stress markers upon decavanadate in vivo administration. J. Inorg. Biochem. 2007, 101, 80–88. [Google Scholar] [CrossRef]
- Tavakoli, M.; Bateni, E.; Rismanchian, M.; Fathi, M.; Doostmohammadi, A.; Rabiei, A.; Sadeghi, H.; Etebari, M.; Mirian, M. Genotoxicity effects of nano bio-active glass and Novabone bioglass on gingival fibroblasts using single cell gel electrophoresis (comet assay): An in vitro study. Dent. Res. J. 2012, 9, 314–320. [Google Scholar]
Element | Position (eV) | FWHM (eV) | Area/(RSF*T*MFP) (eV s−1) | At. % | ||||
---|---|---|---|---|---|---|---|---|
BG1 | BG2 | BG1 | BG2 | BG1 | BG2 | BG1 | BG2 | |
B 1s | 194.25 | 194.19 | 2.63 | 2.66 | 6391.50 | 6688.22 | 31.41 | 31.13 |
Ca 2p (3/2) | 349.45 | 349.47 | 2.45 | 2.46 | 2737.79 | 2831.42 | 13.45 | 13.17 |
F 1s | 687.04 | 687.05 | 3.17 | 2.97 | 938.84 | 667.07 | 4.61 | 3.10 |
O 1s | 533.65 | 533.65 | 3.01 | 3.03 | 10260.40 | 11268.50 | 50.43 | 52.44 |
V 2s | 633.04 | 632.67 | 2.08 | 3.17 | ~3.5 * | 29.57 | 0.07 | 0.13 |
Immersion Time | O | B | Ca | F | |
---|---|---|---|---|---|
BG1 | 43.8 | 42.2 | 6.2 | 3.7 | |
BG2 | 1/4 d | 46.4 | 52.2 | 6 | 4.4 |
BG1 | 49.47 | 50.2 | 6.2 | 2.6 | |
BG2 | 1 d | 48.3 | 50.4 | 2.9 | 3.4 |
BG1 | 47.5 | 48.9 | 4 | 4.3 | |
BG2 | 3 d | 42.1 | 46.5 | 5 | 3.4 |
BG1 | 47.77 | 45.9 | 7.23 | 4.6 | |
BG2 | 7 d | 47.7 | 44.2 | 6.8 | 3.9 |
BG1 | 50.4 | 60.9 | 3.7 | 4.3 | |
BG2 | 14 d | 48.1 | 32.6 | 7.9 | 4.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clichici, A.; Filip, G.A.; Achim, M.; Baldea, I.; Cristea, C.; Melinte, G.; Pana, O.; Tudoran, L.B.; Dudea, D.; Stefan, R. Characterization and In Vitro Biocompatibility of Two New Bioglasses for Application in Dental Medicine—A Preliminary Study. Materials 2022, 15, 9060. https://doi.org/10.3390/ma15249060
Clichici A, Filip GA, Achim M, Baldea I, Cristea C, Melinte G, Pana O, Tudoran LB, Dudea D, Stefan R. Characterization and In Vitro Biocompatibility of Two New Bioglasses for Application in Dental Medicine—A Preliminary Study. Materials. 2022; 15(24):9060. https://doi.org/10.3390/ma15249060
Chicago/Turabian StyleClichici, Andra, Gabriela Adriana Filip, Marcela Achim, Ioana Baldea, Cecilia Cristea, Gheorghe Melinte, Ovidiu Pana, Lucian Barbu Tudoran, Diana Dudea, and Razvan Stefan. 2022. "Characterization and In Vitro Biocompatibility of Two New Bioglasses for Application in Dental Medicine—A Preliminary Study" Materials 15, no. 24: 9060. https://doi.org/10.3390/ma15249060
APA StyleClichici, A., Filip, G. A., Achim, M., Baldea, I., Cristea, C., Melinte, G., Pana, O., Tudoran, L. B., Dudea, D., & Stefan, R. (2022). Characterization and In Vitro Biocompatibility of Two New Bioglasses for Application in Dental Medicine—A Preliminary Study. Materials, 15(24), 9060. https://doi.org/10.3390/ma15249060