Radiative Thermal Effects in Large Scale Additive Manufacturing of Polymers: Numerical and Experimental Investigations
Abstract
:1. Introduction
2. Experimental Setup
3. Numerical Modeling
4. Results and Discussion
5. Conclusions
- A numerical model coupled with experimental data was developed for the LSAM polymer process.
- Highlighting of radiative thermal exchanges that should be used for the simulation and optimization of extrusion-based AM processes.
- Confirmation of the importance of the infrared radiation emitted by the nozzle. This radiative energy can help to weld deposited strands on previously manufactured strands by increasing the interface temperature.
- By the numerical results, the radiative power emitted by the wall of the manufactured box is also highlighted.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carneiro, O.S.; Silva, A.F.; Gomes, R. Fused deposition modeling with polypropylene. Mater. Des. 2015, 83, 768–776. [Google Scholar] [CrossRef]
- Zhong, W.; Li, F.; Zhang, Z.; Song, L.; Li, Z. Short fiber reinforced composites for fused deposition modeling. Mater. Sci. Eng. A 2001, 301, 125–130. [Google Scholar] [CrossRef]
- Tekinalp, H.L.; Kunc, V.; Velez-Garcia, G.M.; Duty, C.E.; Love, L.J.; Naskar, A.K.; Blue, C.A.; Ozcan, S. Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos. Sci. Technol. 2014, 105, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Melenka, G.W.; Cheung, B.K.O.; Schofield, J.S.; Dawson, M.R.; Carey, J.P. Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures. Compos. Struct. 2016, 153, 866–875. [Google Scholar] [CrossRef]
- Christiyan, K.G.J.; Chandrasekhar, U.; Venkateswarlu, K. Influence of raster orientation and layer thickness on mechanical properties of ABS material using FDM process. Int. J. Adv. Res. Sci. Eng. 2014, 3, 6. [Google Scholar]
- Savvakis, K.; Petousis, M.; Vairis, A.; Vidakis, N.; Bikmeyev, A.T. Experimental Determination of the Tensile Strength of Fused Deposition Modeling Parts. In Proceedings of the American Society of Mechanical Engineers Digital Collection, Montreal, QC, Canada, 14–20 November 2014. [Google Scholar] [CrossRef]
- Shofner, M.L.; Lozano, K.; Rodríguez-Macías, F.J.; Barrera, E.V. Nanofiber-reinforced polymers prepared by fused deposition modeling. J. Appl. Polym. Sci. 2003, 89, 3081–3090. [Google Scholar] [CrossRef]
- Le, A.D.; Cosson, B.; Asséko, A.C.A. Simulation of large-scale additive manufacturing process with a single-phase level set method: A process parameters study. Int. J. Adv. Manuf. Technol. 2021, 113, 3343–3360. [Google Scholar] [CrossRef]
- Hwang, S. Study of Materials and Machines for 3D Printed Large-scale, Flexible Electronic Structures Using Fused Deposition Modeling. Available online: https://scholarworks.utep.edu/open_etd/1072/ (accessed on 26 January 2022).
- Hopmann, C.; Dahlmann, R.; Lammert, N.; Pelzer, L.; Hellmich, C. Process and design optimisation in additive manufacturing. In Proceedings of the 30th International Colloquium Plastics Technology, Online, 8–11 September 2020; Shaker Verlag: Düren, Germany, 2020. ISBN 978-3-8440-6892-4. [Google Scholar]
- Thézé, A.; Régnier, G.; Guinault, A.; Richard, S.; Macquaire, B. Fused filament fabrication printing process of polymers highly filled with metallic powder: A significant influence of the nozzle radiation on the substrate temperature. Int. J. Mater. Form. 2021, 14, 1511–1521. [Google Scholar] [CrossRef]
- Hwang, S.; Reyes, E.I.; Moon, K.s.; Rumpf, R.C.; Kim, N.S. Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process. J. Electron. Mater. 2015, 44, 771–777. [Google Scholar] [CrossRef]
- Reddy, B.V.; Reddy, N.V.; Ghosh, A. Fused deposition modelling using direct extrusion. Virtual Phys. Prototyp. 2007, 2, 51–60. [Google Scholar] [CrossRef]
- Costa, S.; Duarte, F.; Covas, J. Thermal conditions affecting heat transfer in FDM/FFE: A contribution towards the numerical modelling of the process. Virtual Phys. Prototyp. 2015, 10, 35–46. [Google Scholar] [CrossRef]
- Sun, Q.; Rizvi, G.; Bellehumeur, C.; Gu, P. Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp. J. 2008, 14, 72–80. [Google Scholar] [CrossRef]
- Du, J.; Wei, Z.; Wang, X.; Wang, J.; Chen, Z. An improved fused deposition modeling process for forming large-size thin-walled parts. J. Mater. Process. Technol. 2016, 234, 332–341. [Google Scholar] [CrossRef]
- Ravi, A.K.; Deshpande, A.; Hsu, K.H. An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing. J. Manuf. Process. 2016, 24, 179–185. [Google Scholar] [CrossRef]
- Cosson, B.; Akué Asséko, A.C. Effect of the Nozzle Radiation on the Fused Filament Fabrication Process: Three-Dimensional Numerical Simulations and Experimental Investigation. J. Heat Transf. 2019, 141, 082102. [Google Scholar] [CrossRef]
- Hopmann, C.; Pelzer, L. Additive Manufacturing of Large Parts by an Extrusion based Hybrid Approach. In Proceedings of the Polymer Processing Society–PPS Conference Proceedings, Cesme-Izmir, Turkey, 26–30 May 2019. [Google Scholar]
- Cosson, B.; Schmidt, F.; Maoult, Y.; Bordival, M. Infrared heating stage simulation of semi-transparent media (PET) using ray tracing method. Int. J. Mater. Form. 2011, 4, 1–10. [Google Scholar] [CrossRef]
- Ray, M.S. Thermal Radiation Heat Transfer, 3rd ed.; Siegel, R., Howell, J.R., Eds.; Hemisphere Publishing Corporation: New York, NY, USA, 1992; 1072p, ISBN 0-89116-271-2. [Google Scholar] [CrossRef]
- Seppala, J.E.; Migler, K.D. Infrared thermography of welding zones produced by polymer extrusion additive manufacturing. Addit. Manuf. 2016, 12, 71–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lepoivre, A.; Boyard, N.; Levy, A.; Sobotka, V. Heat Transfer and Adhesion Study for the FFF Additive Manufacturing Process. Procedia Manuf. 2020, 47, 948–955. [Google Scholar] [CrossRef]
- Compton, B.G.; Post, B.K.; Duty, C.E.; Love, L.; Kunc, V. Thermal analysis of additive manufacturing of large-scale thermoplastic polymer composites. Addit. Manuf. 2017, 17, 77–86. [Google Scholar] [CrossRef]
- Wolszczak, P.; Lygas, K.; Paszko, M.; Wach, R.A. Heat distribution in material during fused deposition modelling. Rapid Prototyp. J. 2018, 24, 615–622. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosson, B.; Akué Asséko, A.C.; Pelzer, L.; Hopmann, C. Radiative Thermal Effects in Large Scale Additive Manufacturing of Polymers: Numerical and Experimental Investigations. Materials 2022, 15, 1052. https://doi.org/10.3390/ma15031052
Cosson B, Akué Asséko AC, Pelzer L, Hopmann C. Radiative Thermal Effects in Large Scale Additive Manufacturing of Polymers: Numerical and Experimental Investigations. Materials. 2022; 15(3):1052. https://doi.org/10.3390/ma15031052
Chicago/Turabian StyleCosson, Benoît, André Chateau Akué Asséko, Lukas Pelzer, and Christian Hopmann. 2022. "Radiative Thermal Effects in Large Scale Additive Manufacturing of Polymers: Numerical and Experimental Investigations" Materials 15, no. 3: 1052. https://doi.org/10.3390/ma15031052
APA StyleCosson, B., Akué Asséko, A. C., Pelzer, L., & Hopmann, C. (2022). Radiative Thermal Effects in Large Scale Additive Manufacturing of Polymers: Numerical and Experimental Investigations. Materials, 15(3), 1052. https://doi.org/10.3390/ma15031052