A Novel Algorithm for Thickness Prediction in Incremental Sheet Metal Forming
Abstract
:1. Introduction
2. Mathematical Model and Methods for Thickness Calculation
- Get the Cartesian or coordinates of the discrete points;
- Set the knot vectors;
- Construct the NURBS surface;
- Compute the first derivatives of the NURBS surface;
- Compute the cross product of two partial derivatives;
- Compute the final thickness.
3. Experimental Results and Discussion
3.1. Case 1: Truncated Cone Shape
3.2. Case 2: A truncated Pyramid Part
3.3. Case 3: A Hemi-Ellipsoid Part
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matsubara, S. Incremental backward bulge forming of a sheet metal with a hemispherical head tool: A study of a numerical control forming system II. J. JSTP 1994, 35, 1311–1316. [Google Scholar]
- Malhotra, R.; Cao, J.; Ren, F.; Kiridena, V.; Xia, Z.C. Improvement of geometric accuracy in incremental forming by using a squeezing toolpath strategy with two forming tools. J. Manuf. Sci. Eng. 2011, 133, 603–611. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, W. A deformation analysis and experimental study for a novel full kinematic incremental forming. Aust. J. Mech. Eng. 2016, 14, 73–81. [Google Scholar] [CrossRef]
- Behera, A.K.; Sousa, R.A.; Ingarao, G.; Oleksik, V. Single point incremental forming: An assessment of the progress and technology trends from 2005 to 2015. J. Manuf. Processes 2017, 27, 37–62. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Gupta, S.K.; Singh, P.K.; Kumar, S. Robot assisted incremental sheet forming of Al6061 under static pressure: Preliminary study of thickness distribution within the deformation region. Mater. Today Proc. 2021, 47, 2737–2741. [Google Scholar] [CrossRef]
- Silva, M.B.; Skjoedt, M.; Atkins, A.G.; Bay, N.; Martins, P.A.F. Single-point incremental forming and formability-failure diagrams. J. Strain Anal. Eng. Des. 2008, 43, 15–35. [Google Scholar] [CrossRef]
- Cui, Z.; Xia, Z.C.; Ren, F.; Kiridena, V.; Gao, L. Modeling and validation of deformation process for incremental sheet forming. J. Manuf. Processes 2013, 15, 236–241. [Google Scholar] [CrossRef]
- Young, D.; Jeswiet, J. Wall thickness variations in single-point incremental forming. J. Eng. Manuf. 2004, 218, 1453–1459. [Google Scholar] [CrossRef]
- Zhou, L. Research on the thickness change laws in numerical control incremental sheet forming. J. Mech. Eng. 2011, 47, 50–54. [Google Scholar] [CrossRef]
- Li, J.; Yang, F.; Zhou, Z. Thickness distribution of multi-stage incremental forming with different forming stages and angle intervals. J. Cent. South Univ. 2015, 22, 842–848. [Google Scholar] [CrossRef]
- Wei, H.; Gao, L.; Li, S. Investigation of thickness distribution of incrementally formed sheet metal parts. J. Shandong Univ. (Eng. Sci.) 2009, 39, 82–87. [Google Scholar]
- Gonzalez, M.M.; Lutes, N.A.; Fischer, J.D.; Woodside, M.R.; Bristow, D.A.; Landers, R.G. Analysis of geometric accuracy and thickness reduction in multistage incremental sheet forming using digital image correlation. Procedia Manuf. 2019, 34, 950–960. [Google Scholar] [CrossRef]
- Bambach, M. A geometrical model of the kinematics of incremental sheet forming for the prediction of membrane strains and sheet thickness. J. Mater. Processing Technol. 2010, 210, 1562–1573. [Google Scholar] [CrossRef]
- Malhotra, R.; Cao, J.; Beltran, M.; Xu, D.K.; Magargee, J.; Kiridena, V.; Xia, Z.C. Accumulative-DSIF Strategy for enhancing process capabilities in incremental forming. CIRP Ann. Manuf. Technol. 2012, 61, 251–254. [Google Scholar] [CrossRef]
- Salem, E.; Shin, J.; Nath, M.; Banu, M.; Taub, A.I. Investigation of thickness variation in single point incremental forming. Procedia Manuf. 2016, 5, 828–837. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Lee, C. A mathematical model to predict thickness distribution and formability of incremental forming combined with stretch forming. Robot. Comput.-Integr. Manuf. 2019, 55, 164–172. [Google Scholar] [CrossRef]
Material Parameters | Aluminum Sheet | Forming Tool |
---|---|---|
Density | 2700 kg m−3 | 7850 kg m−3 |
Elastic modulus | 69 GPa | 210 GPa |
Poisson’s ratio | 0.33 | 0.3 |
Radial Feed Rate | Axial Step Down | Rotational Speed | |
---|---|---|---|
Truncated cone (76°) | 2.0 mm | 0.5 mm | 4.0 r/min |
Truncated cone (53.2°) | 1.0 mm | 0.75 mm | 4.0 r/min |
Truncated pyramid | 0.4 mm | 0.3 mm | 2.0 r/min |
Hemi-ellipsoid | 0.3–4.4 mm | 1.0 mm | 0.5 r/min |
Formed Parts | Depth | Maximum Deviation of Thickness | Percentage | RMSE between Prediction and Experiment | RMSE between Prediction and Simulation | RMSE between Experiment and Simulation |
---|---|---|---|---|---|---|
Truncated cone (76°) | 5 mm | 0.0220 mm | 2.32% | 0.0197 mm | 0.0148 mm | 0.0061 mm |
Truncated cone (53.2°) | 15 mm | 0.0360 mm | 4.71% | 0.0471 mm | 0.0539 mm | 0.0157 mm |
Truncated pyramid | 15 mm | 0.0400 mm | 5.26% | 0.0499 mm | 0.0437 mm | 0.0336 mm |
Hemi-ellipsoid (major axis) | 15 mm | 0.0408 mm | 7.03% | 0.0339 mm | - | - |
Hemi-ellipsoid (minor axis) | 15 mm | 0.0456 mm | 9.81% | 0.0305 mm | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, L.; Zhang, H.; Gu, Y.; Ye, Y. A Novel Algorithm for Thickness Prediction in Incremental Sheet Metal Forming. Materials 2022, 15, 1201. https://doi.org/10.3390/ma15031201
Wang Y, Wang L, Zhang H, Gu Y, Ye Y. A Novel Algorithm for Thickness Prediction in Incremental Sheet Metal Forming. Materials. 2022; 15(3):1201. https://doi.org/10.3390/ma15031201
Chicago/Turabian StyleWang, Yuhuai, Lidong Wang, Huixi Zhang, Yong Gu, and Yaokun Ye. 2022. "A Novel Algorithm for Thickness Prediction in Incremental Sheet Metal Forming" Materials 15, no. 3: 1201. https://doi.org/10.3390/ma15031201
APA StyleWang, Y., Wang, L., Zhang, H., Gu, Y., & Ye, Y. (2022). A Novel Algorithm for Thickness Prediction in Incremental Sheet Metal Forming. Materials, 15(3), 1201. https://doi.org/10.3390/ma15031201