Magnetite Impregnated Lignocellulosic Biomass for Zn(II) Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Lignocellulosic Biomass Conditioning and Characterization
2.3. Magnetite Impregnation of Lignocellulosic Biomass and Characterization
2.4. Adsorption Studies
3. Results
3.1. Adsorbents Characterization
3.1.1. Chemical Composition of Lignocellulosic Biomass
3.1.2. Infrared Spectroscopy
3.1.3. Scanning and Transmission Electron Microscopy
3.1.4. X-ray Diffraction
3.2. Adsorption Studies
3.2.1. Optimal Time and Adsorbent Dosage
3.2.2. Adsorption Kinetics
3.2.3. Adsorption Isotherms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, J.; Kalamdhad, A.S. Effects of Heavy Metals on Soil, Plants, Human Health and Aquatic Life Making bricks using variety of solid waste View project Anaerobic digestion View project. Int. J. Res. Chem. Environ. 2011, 1, 15–21. [Google Scholar]
- Ali, A.; Saeed, K.; Mabood, F. Removal of chromium (VI) from aqueous medium using chemically modified banana peels as efficient low-cost adsorbent. Alexandria Eng. J. 2016, 55, 2933–2942. [Google Scholar] [CrossRef] [Green Version]
- Setyono, D.; Valiyaveettil, S. Chemically modified sawdust as renewable adsorbent for arsenic removal from water. ACS Sustain. Chem. Eng. 2014, 2, 2722–2729. [Google Scholar] [CrossRef]
- Miretzky, P.; Cirelli, A.F. Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review. J. Hazard. Mater. 2010, 180, 1–19. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Morad, N.; Tan, K.A. Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution. J. Hazard. Mater. 2011, 186, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Sureshkumar, V.; Kiruba Daniel, S.C.G.; Ruckmani, K.; Sivakumar, M. Fabrication of chitosan–magnetite nanocomposite strip for chromium removal. Appl. Nanosci. 2016, 6, 277–285. [Google Scholar] [CrossRef] [Green Version]
- Abdolali, A.; Guo, W.S.; Ngo, H.H.; Chen, S.S.; Nguyen, N.C.; Tung, K.L. Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: A critical review. Bioresour. Technol. 2014, 160, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Owalude, S.O.; Tella, A.C. Removal of hexavalent chromium from aqueous solutions by adsorption on modified groundnut hull. Beni-Suef Univ. J. Basic Appl. Sci. 2016, 5, 377–388. [Google Scholar] [CrossRef] [Green Version]
- Gakwisiri, C.; Raut, N.; Al-Saadi, A.; Al-Aisri, S.; Al-Ajmi, A. A critical review of removal of zinc from wastewater. Lect. Notes Eng. Comput. Sci. 2012, 2197, 627–630. [Google Scholar]
- Hegazi, H.A. Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC J. 2013, 9, 276–282. [Google Scholar] [CrossRef] [Green Version]
- Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 2012, 211–212, 317–331. [Google Scholar] [CrossRef]
- Cheng, Z.; Gao, Z.; Ma, W.; Sun, Q.; Wang, B.; Wang, X. Preparation of magnetic Fe3O4 particles modified sawdust as the adsorbent to remove strontium ions. Chem. Eng. J. 2012, 209, 451–457. [Google Scholar] [CrossRef]
- Moafi, H.F.; Ansari, R.; Sadeghnia, S. Preparation of wood sawdust/Fe2O3 nanocomposite and its application for arsenic (III) ion removal from aqueous solutions. Cellul. Chem. Technol. 2018, 52, 271–282. [Google Scholar]
- Gupta, V.K.; Nayak, A. Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem. Eng. J. 2012, 180, 81–90. [Google Scholar] [CrossRef]
- CFN. Ficha Sectorial: Explotación De Viveros Forestales y Madera En Pie; CFN: Quito, Ecuador, 2017. [Google Scholar]
- Daian, G.; Ozarska, B. Wood waste management practices and strategies to increase sustainability standards in the Australian wooden furniture manufacturing sector. J. Clean. Prod. 2009, 17, 1594–1602. [Google Scholar] [CrossRef]
- Chompu-Inwai, R.; Jaimjit, B.; Premsuriyanunt, P. A combination of Material Flow Cost Accounting and design of experiments techniques in an SME: The case of a wood products manufacturing company in northern Thailand. J. Clean. Prod. 2015, 108, 1352–1364. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Press 2021, 22, 101504. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Azizian, S.; Douven, S. Implications of Apparent Pseudo-Second-Order Adsorption Kinetics onto Cellulosic Materials: A Review. BioResources 2019, 14, 7582–7626. [Google Scholar] [CrossRef]
- Sciban, M.; Klasnja, M.; Skrbic, B. Modified hardwood sawdust as adsorbent of heavy metal ions from water. Wood Sci. Technol. 2006, 40, 217–227. [Google Scholar] [CrossRef]
- Šćiban, M.; Radetić, B.; Kevrešan, Ž.; Klašnja, M. Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresour. Technol. 2007, 98, 402–409. [Google Scholar] [CrossRef]
- Bulut, Y.; Tez, Z. Removal of heavy metals from aqueous solution by sawdust adsorption. J. Environ. Sci. 2007, 19, 160–166. [Google Scholar] [CrossRef]
- Weber, W.J., Jr.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Okumu, F. A Novel Polyaniline Titanium Oxide Sawdust Composite Adsorbent for Polychlorinated Biphenyls. Sci. J. Chem. 2013, 1, 29. [Google Scholar] [CrossRef] [Green Version]
- McCoy, M.A.; Liapis, A.I. Evaluation of kinetic models for biospecific adsorption and its implications for finite bath and column performance. J. Chromatogr. A 1991, 548, 25–60. [Google Scholar] [CrossRef]
- Almeida-naranjo, C.E.; Belén, M.; Cabrera, G.; Guerrero, V.H. Caffeine removal from synthetic wastewater using magnetic fruit peel composites: Material characterization, isotherm and kinetic studies. Environ. Challenges 2021, 5, 100343. [Google Scholar] [CrossRef]
- Azzaz, A.A.; Jellali, S.; Assadi, A.A.; Bousselmi, L. Chemical treatment of orange tree sawdust for a cationic dye enhancement removal from aqueous solutions: Kinetic, equilibrium and thermodynamic studies. Desalin. Water Treat. 2016, 57, 22107–22119. [Google Scholar] [CrossRef]
- Md Salim, R.; Asik, J.; Sarjadi, M.S. Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Sci. Technol. 2021, 55, 295–313. [Google Scholar] [CrossRef]
- Petcharoen, K.; Sirivat, A. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2012, 177, 421–427. [Google Scholar] [CrossRef]
- Tajabadi, M.; Khosroshahi, M.E. Effect of Alkaline Media Concentration and Modification of Temperature on Magnetite Synthesis Method Using FeSO4/NH4OH. Int. J. Chem. Eng. Appl. 2012, 3, 206–210. [Google Scholar] [CrossRef]
- Nethaji, S.; Sivasamy, A.; Mandal, A.B. Preparation and characterization of corn cob activated carbon coated with nano-sized magnetite particles for the removal of Cr(VI). Bioresour. Technol. 2013, 134, 94–100. [Google Scholar] [CrossRef]
- Shahid, M.K.; Choi, Y. Characterization and application of magnetite Particles, synthesized by reverse coprecipitation method in open air from mill scale. J. Magn. Magn. Mater. 2020, 495, 165823. [Google Scholar] [CrossRef]
- Fujimoto, K.; Oku, T.; Akiyama, T. Fabrication and Characterization of ZnO/Cu2O Solar Cells Prepared by Electrodeposition. Appl. Phys. Express 2013, 6, 086503. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, R.; Zhao, J.; Zhang, Y.; Wong, P.K.; Ma, F. Biosorption of zinc from aqueous solution using chemically treated rice husk. Biomed Res. Int. 2013, 2013, 365163. [Google Scholar] [CrossRef] [PubMed]
- Feng, N.C.; Guo, X.Y.; Liang, S. Kinetic and thermodynamic studies on biosorption of Cu(II) by chemically modified orange peel. Trans. Nonferrous Met. Soc. China Engl. Ed. 2009, 19, 1365–1370. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, X.; Cao, Z.; Zhan, Y.; Shi, X.; Yang, Y.; Zhou, J.; Xu, J. Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. J. Hazard. Mater. 2016, 310, 235–245. [Google Scholar] [CrossRef]
- Ertugay, N.; Bayhan, Y.K. The removal of copper (II) ion by using mushroom biomass (Agaricus bisporus) and kinetic modelling. Desalination 2010, 255, 137–142. [Google Scholar] [CrossRef]
- Zhu, S.; Hou, H.; Xue, Y. RETRACTED: Kinetic and isothermal studies of lead ion adsorption onto bentonite. Appl. Clay Sci. 2008, 40, 171–178. [Google Scholar] [CrossRef]
- Nandi, B.K.; Goswami, A.; Purkait, M.K. Adsorption characteristics of brilliant green dye on kaolin. J. Hazard. Mater. 2009, 161, 387–395. [Google Scholar] [CrossRef]
- Behnamfard, A.; Salarirad, M.M. Equilibrium and kinetic studies on free cyanide adsorption from aqueous solution by activated carbon. J. Hazard. Mater. 2009, 170, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Tan, I.A.W.; Ahmad, A.L.; Hameed, B.H. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater. 2008, 154, 337–346. [Google Scholar] [CrossRef]
- Wang, C.C.; Juang, L.C.; Hsu, T.C.; Lee, C.K.; Lee, J.F.; Huang, F.C. Adsorption of basic dyes onto montmorillonite. J. Colloid Interface Sci. 2004, 273, 80–86. [Google Scholar] [CrossRef]
- León, G.; Aldás, M.; Guerrero, V.; Landázuri, A.; Almeida-Naranjo, C. Caffeine and irgasan removal from water using bamboo, laurel and moringa residues impregnated with commercial TiO2 nanoparticles. MRS Adv. 2019, 4, 3553–3567. [Google Scholar] [CrossRef]
- Mitic-Stojanovic, D.-L.; Bojic, D.; Mitrovic, J.; Andjelkovic, T.; Radovic, M.; Bojic, A. Equilibrium and kinetic studies of Pb(II), Cd(II) and Zn(II) sorption by Lagenaria vulgaris shell. Chem. Ind. Chem. Eng. Q. 2012, 18, 563–576. [Google Scholar] [CrossRef]
- Feng, N.C.; Guo, X.Y. Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead and zinc by modified orange peel. Trans. Nonferrous Met. Soc. China Engl. Ed. 2012, 22, 1224–1231. [Google Scholar] [CrossRef]
- Castro, D.; Rosas-Laverde, N.M.; Aldás, M.B.; Almeida-naranjo, C.; Guerrero, V.H.; Pruna, A.I. Chemical modification of agro-industrial waste-based bioad- sorbents for enhanced removal of Zn(II) ions from aqueous solutions. Materials 2021, 14, 2134. [Google Scholar] [CrossRef]
- Nyamunda, B.C.; Chivhanga, T.; Guyo, U.; Chigondo, F. Removal of Zn (II) and Cu (II) ions from industrial wastewaters using magnetic biochar derived from water hyacinth. J. Eng. 2019, 2019, 5656983. [Google Scholar] [CrossRef] [Green Version]
Component | Laurel | Canelo | Eucalyptus | |
---|---|---|---|---|
Chemical composition | Cellulose [wt %] | 50.20 | 53.49 | 58.44 |
Lignin [wt %] | 31.84 | 28.28 | 18.28 | |
Hemicellulose [wt %] | 12.76 | 12.45 | 16.01 | |
Extractives [wt %] | 5.20 | 5.78 | 7.27 | |
Proximate analysis | Volatile matter [wt %] | 70.94 | 78.70 | 81.52 |
Fixed carbon [wt %] | 17.99 | 12.93 | 12.54 | |
Ash content [wt %] | 1.38 | 0.16 | 0.25 | |
Moisture [wt %] | 9.69 | 8.21 | 5.69 |
Lignocellulosic Biomass | Pseudo First-Order | Pseudo Second-Order | |||||
---|---|---|---|---|---|---|---|
R2 | R2 | ||||||
Laurel | 8.602 | 0.0323 | 0.873 | 10.013 | 0.0141 | 1.412 | 0.998 |
Canelo | 6.913 | 0.0296 | 0.946 | 10.052 | 0.0116 | 1.171 | 0.999 |
Eucalyptus | 7.81 | 0.0275 | 0.947 | 10.613 | 0.0041 | 0.456 | 0.963 |
Isotherm Model/Adsorbent | Parameter | Laurel | Canelo | Eucalyptus |
---|---|---|---|---|
Langmuir | qm, mg g−1 | 0.11 | 0.15 | 0.31 |
KL (L mg−1) | 23.8 | 20.7 | 7.9 | |
R2 | 0.967 | 0.913 | 0.971 | |
Freundlich | qm, mg g−1 | 2.31 | 2.61 | 2.18 |
KF, (L g−1) | 0.12 | 0.18 | 0.5 | |
n | 1.25 | 1.39 | 2.31 | |
R2 | 0.989 | 0.967 | 0.961 | |
Temkin | KT, (L mg−1) | 0.89 | 0.38 | 0.95 |
B | 0.69 | 0.84 | 0.58 | |
R2 | 0.914 | 0.926 | 0.931 | |
D-R | Xm, (mg g−1) | 1.36 | 1.68 | 1.78 |
E, (kJ mol−1) | 0.353 | 0.37 | 0.452 | |
R2 | 0.616 | 0.633 | 0.805 |
Isotherm Model/Adsorbent | Parameter | Laurel | Canelo | Eucalyptus |
---|---|---|---|---|
Langmuir | qm, mg g−1 | 6 | 4.2 | 2.7 |
KL (L mg−1) | 0.012 | 0.035 | 0.1 | |
R2 | 0.971 | 0.956 | 0.978 | |
SSE | 0.065 | 0.1 | 0.078 | |
Freundlich | qm, mg g−1 | 2.31 | 2.62 | 2.24 |
KF, (L g−1) | 0.16 | 0.21 | 0.454 | |
n | 1.52 | 1.48 | 2.31 | |
R2 | 0.989 | 0.972 | 0.966 | |
SSE | 0.046 | 0.08 | 0.039 | |
Temkin | KT, (L mg−1) | 0.34 | 0.54 | 0.951 |
B | 0.693 | 0.72 | 0.585 | |
R2 | 0.914 | 0.921 | 0.931 | |
SSE | 0.182 | 0.248 | 0.081 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asimbaya, C.; Rosas-Laverde, N.M.; Galeas, S.; Debut, A.; Guerrero, V.H.; Pruna, A. Magnetite Impregnated Lignocellulosic Biomass for Zn(II) Removal. Materials 2022, 15, 728. https://doi.org/10.3390/ma15030728
Asimbaya C, Rosas-Laverde NM, Galeas S, Debut A, Guerrero VH, Pruna A. Magnetite Impregnated Lignocellulosic Biomass for Zn(II) Removal. Materials. 2022; 15(3):728. https://doi.org/10.3390/ma15030728
Chicago/Turabian StyleAsimbaya, Christopher, Nelly Maria Rosas-Laverde, Salome Galeas, Alexis Debut, Victor H. Guerrero, and Alina Pruna. 2022. "Magnetite Impregnated Lignocellulosic Biomass for Zn(II) Removal" Materials 15, no. 3: 728. https://doi.org/10.3390/ma15030728
APA StyleAsimbaya, C., Rosas-Laverde, N. M., Galeas, S., Debut, A., Guerrero, V. H., & Pruna, A. (2022). Magnetite Impregnated Lignocellulosic Biomass for Zn(II) Removal. Materials, 15(3), 728. https://doi.org/10.3390/ma15030728