Microstructural and Texture Evolution in Pure Niobium during Severe Plastic Deformation by Differential Speed Rolling
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Initial Microstructure and Texture
3.2. Microstructure Evolution during Rolling
3.3. Texture Evolution during Rolling
3.4. Tensile Properties
4. Conclusions
- 1.
- More effective grain refinement by CDRX occurred in the samples processed by HRDSR compared to those processed by ESR, but the degree of grain refinement was low even in the HRDSR-processed samples most likely due to a very high SFE of Nb.
- 2.
- The ESR-processed samples exhibited a stronger α-fiber than the HRDSR-processed samples, while the HRDSR-processed samples exhibited a stronger γ-fiber, indicating that strong shear deformation induced by HRDSR promoted the development of γ-fiber.
- 3.
- CDRX preferentially occurred on the {111}<uvw> γ-fiber grains, which was attributed to the accumulation of a higher dislocation density (leading to a high strain gradient) compared to the {001}<110> rotated cube component.
- 4.
- The HRDSR-processed Nb showed higher strength than the ERS-processed Nb. The strengthening mechanism for the HRDSR-processed Nb was analyzed, and dislocation strengthening was found to be the major strength mechanism.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, X. A review and prospects for Nb3Sn superconductor development. Supercond. Sci. Technol. 2017, 30, 093001. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.N. NbTi superconductors with low ac loss: A review. Cryogenics 2008, 48, 381–395. [Google Scholar] [CrossRef]
- Bernardi, H.H.; Sandim, H.R.Z.; Zilnyk, K.D.; Verlinden, B.; Raabe, D. Microstructural stability of a niobium single crystal Deformed by Equal Channel Angular Pressing. Mater. Res. 2017, 20, 1238–1247. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, R.; Viswanathan, G.B.; Levit, V.I.; Fraser, H.L. Orientation effect on recovery and recrystallization of cold rolled niobium single crystals. Mater. Sci. Eng. A 2009, 507, 179–189. [Google Scholar] [CrossRef]
- Sandim, H.R.Z.; Raabe, D. EBSD study of grain subdivision of a goss grain in coarse-grained cold-rolled niobium. Scr. Mater. 2005, 53, 207–212. [Google Scholar] [CrossRef]
- Abreu, H.F.G.; Tavares, S.S.M.; Carvalho, S.S.; Eduardo, T.H.T.; Bruno, A.D.S.; Prado da Silva, M.H. Texture and microstructure of cold rolled and recrystallized pure niobium. Mater. Sci. Forum 2007, 539–543, 3436–3441. [Google Scholar] [CrossRef]
- Zhu, L.; Sandim, H.R.Z.; Seefeldt, M.; Verlinden, B. EBSD characterization of an ECAP deformed Nb single crystal. J. Mater. Sci. 2010, 45, 4672–4681. [Google Scholar] [CrossRef]
- Popov, V.V.; Popova, E.N.; Stolbovskiy, A.V. Nanostructuring Nb by various techniques of severe plastic deformation. Mater. Sci. Eng. A 2012, 539, 22–29. [Google Scholar] [CrossRef]
- Kim, W.J.; Lee, J.B.; Kim, W.Y.; Jeong, H.T.; Jeong, H.G. Microstructure and mechanical properties of Mg-Al-Zn alloy sheets severely deformed by asymmetrical rolling. Scr. Mater. 2007, 56, 309–312. [Google Scholar] [CrossRef]
- Huang, X.; Suzuki, K.; Chino, Y. Improvement of stretch formability of pure titanium sheet by differential speed rolling. Scr. Mater. 2010, 63, 473–476. [Google Scholar] [CrossRef]
- Loorentz; Ko, Y.G. Microstructure evolution and mechanical properties of severely deformed Al alloy processed by differential speed rolling. J. Alloy. Compd. 2012, 536, S122–S125. [Google Scholar] [CrossRef]
- Park, J.H.; Hamad, K.; Widiantara, I.P.; Ko, Y.G. Strain and crystallographic texture evaluation of interstitial free steel cold deformed by differential speed rolling. Mater. Lett. 2015, 147, 38–41. [Google Scholar] [CrossRef]
- Polkowski, W.; Jóźwik, P.; Polański, M.; Bojar, Z. Microstructure and texture evolution of copper processed by differential speed rolling with various speed asymmetry coefficient. Mater. Sci. Eng. A 2013, 564, 289–297. [Google Scholar] [CrossRef]
- Kim, W.J.; Yoo, S.J.; Chen, Z.H.; Jeong, H.T. Grain size and texture control of Mg-3Al-1Zn alloy sheet using a combination of equal-channel angular rolling and high-speed-ratio differential speed-rolling processes. Scr. Mater. 2009, 60, 897–900. [Google Scholar] [CrossRef]
- Kim, W.J.; Yoo, S.J.; Jeong, H.T.; Kim, D.M.; Choe, B.H.; Lee, J.B. Effect of the speed ratio on grain refinement and texture development in pure Ti during differential speed rolling. Scr. Mater. 2011, 64, 49–52. [Google Scholar] [CrossRef]
- Kim, W.J.; Park, J.D.; Wang, J.Y.; Yoon, W.S. Realization of low-temperature superplasticity in Mg-Al-Zn alloy sheets processed by differential speed rolling. Scr. Mater. 2007, 57, 755–758. [Google Scholar] [CrossRef]
- Kim, W.J.; Wang, J.Y.; Choi, S.O.; Choi, H.J.; Sohn, H.T. Synthesis of ultra high strength Al-Mg-Si alloy sheets by differential speed rolling. Mater. Sci. Eng. A 2009, 520, 23–28. [Google Scholar] [CrossRef]
- Jeong, H.T.; Kim, W.J. Microstructures and mechanical properties of the non-equiatomic FeMnNiCoCr high entropy alloy processed by differential speed rolling. Mater. Sci. Eng. A 2018, 727, 38–42. [Google Scholar] [CrossRef]
- Bahmani, A.; Kim, W.-J. Effect of grain refinement and dispersion of particles and reinforcements on mechanical properties of metals and metal matrix composites through high-ratio differential speed rolling. Materials 2020, 13, 4159. [Google Scholar] [CrossRef]
- Padamsee, H.; Knobloch, J.; Hays, T. RF Superconductivity for Accelerators, 2nd ed.; Wiley: Hoboken, NJ, USA, 2008; Available online: https://www.wiley.com/en-us/RF+Superconductivity+for+Accelerators%2C+2nd+Edition-p-9783527408429 (accessed on 20 December 2021).
- Bieler, T.R.; Wright, N.T.; Pourboghrat, F.; Compton, C.; Hartwig, K.T.; Baars, D.; Zamiri, A.; Chandrasekaran, S.; Darbandi, P.; Jiang, H.; et al. Physical and mechanical metallurgy of high purity Nb for accelerator cavities. Phys. Rev. ST Accel. Beams 2010, 13, 031002. [Google Scholar] [CrossRef]
- Sakai, T.; Belyakov, A.; Kaibyshev, R.; Miura, H.; Jonas, J.J. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 2014, 60, 130–207. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Logé, R.E. A Review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 2016, 111, 548–574. [Google Scholar] [CrossRef]
- Murr, L.E. Interfacial Phenomena in Metals and Alloys; Addison-Wesley Publishing Company: Boston, MA, USA, 1975; ISBN 978-0-201-04884-1. [Google Scholar]
- Matthews, J.W.; Nabarro, F.R.N. Dislocations in Solids, 1st ed.; North-Holland Publishing Company: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Voronova, L.M.; Chashchukhina, T.I.; Gapontseva, T.M.; Krasnoperova, Y.G.; Degtyarev, M.V.; Pilyugin, V.P. Effect of the deformation temperature on the structural refinement of BCC metals with a high stacking fault energy during high pressure torsion. Russ. Metall. 2016, 2016, 960–965. [Google Scholar] [CrossRef]
- Velasco, L.; Polyakov, M.N.; Hodge, A.M. Influence of stacking fault energy on twin spacing of Cu and Cu-Al Alloys. Scr. Mater. 2014, 83, 33–36. [Google Scholar] [CrossRef]
- Raabe, D.; Zhao, Z.; Park, S.-J.; Roters, F. Theory of orientation gradients in plastically strained crystals. Acta Mater. 2002, 50, 421–440. [Google Scholar] [CrossRef]
- Qu, P.; Zhou, L.; Xu, H.; Acoff, V.L. Microtexture development of niobium in a multilayered Ti/Al/Nb composite produced by accumulative roll bonding. Metall. Mater. Trans. A 2014, 45, 6217–6230. [Google Scholar] [CrossRef]
- Hall, E.O. The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Sect. B 1951, 64, 747. [Google Scholar] [CrossRef]
- Petch, N.J. The cleavage strength of polycrystals. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar]
- Adams, M.A.; Roberts, A.C.; Smallman, R.E. Yield and fracture in polycrystalline niobium. Acta Metall. 1960, 8, 328–337. [Google Scholar] [CrossRef]
- Taylor, G.I. The mechanism of plastic deformation of crystals. Part I—Theoretical. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1934, 145, 362–387. [Google Scholar]
- Courtney, T.H. Mechanical Behavior of Materials; Waveland Press: Long Grove, IL, USA, 2005. [Google Scholar]
- Arndt, R. Die Temperaturabhängigkeit der Versetzungswechselwirkung in Niob. Int. J. Mater. Res. 1969, 60, 29–37. [Google Scholar] [CrossRef]
- Meyers, M.; Chawla, K.K. Mechanical Metallurgy: Principles and Applications; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1984. [Google Scholar]
- Suzuki, T.; Koizumi, H.; Kirchner, H.O.K. Plastic flow stress of b.c.c. transition metals and the peierls potential. Acta Metall. Mater. 1995, 43, 2177–2187. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.Y.; Kim, W.J. Microstructural and Texture Evolution in Pure Niobium during Severe Plastic Deformation by Differential Speed Rolling. Materials 2022, 15, 752. https://doi.org/10.3390/ma15030752
Park SY, Kim WJ. Microstructural and Texture Evolution in Pure Niobium during Severe Plastic Deformation by Differential Speed Rolling. Materials. 2022; 15(3):752. https://doi.org/10.3390/ma15030752
Chicago/Turabian StylePark, Sang Yong, and Woo Jin Kim. 2022. "Microstructural and Texture Evolution in Pure Niobium during Severe Plastic Deformation by Differential Speed Rolling" Materials 15, no. 3: 752. https://doi.org/10.3390/ma15030752
APA StylePark, S. Y., & Kim, W. J. (2022). Microstructural and Texture Evolution in Pure Niobium during Severe Plastic Deformation by Differential Speed Rolling. Materials, 15(3), 752. https://doi.org/10.3390/ma15030752