Improving the Conductivity of the PEDOT:PSS Layers in Photovoltaic Cells Based on Organometallic Halide Perovskites
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karpova, S.S.; Kompan, M.E.; Maksimov, A.I.; Moshnikov, V.A.; Sapurina, I.Y.; Spivak, I.Y.; Terukov, E.I.; Terukova, E.E.; Titkov, A.N.; Tomasov, A.A.; et al. Fundamentals of Hydrogen Energy; Moshnikov, V.A., Terukov, E.I., Eds.; SPb. Publishing House of ETU LETI: Saint Petersburg, Russia, 2010; p. 288. [Google Scholar]
- Vrublevsky, I.; Chemyakova, K.; Lushpa, N.; Tuchkovsky, A.; Tzaneva, B.; Videkov, V. Obtaining, properties and application of nanoscale films of anodic titanium dioxide on Ti-Al films for perovskite solar cells. In Proceedings of the XXX International Scientific Conference Electronics (ET), Sozopol, Bulgaria, 15–17 September 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Aleshin, A.N.; Shcherbakov, I.P.; Gushchina, E.V.; Matyushkin, L.B.; Moshnikov, V.A. Solution-processed field-effect transistors based on polyfluorene–cesium lead halide nanocrystals composite films with small hysteresis of output and transfer characteristics. Org. Electron. 2017, 50, 213–219. [Google Scholar] [CrossRef]
- Aleshin, A.N.; Shcherbakov, I.P.; Kirilenko, D.A.; Matyushkin, L.B.; Moshnikov, V.A. Light-emitting field-effect transistors based on composite films of polyfluorene and CsPbBr 3 nanocrystals. Phys. Solid State 2019, 61, 256–262. [Google Scholar] [CrossRef]
- Lian, Z.; Yan, Q.; Gao, T.; Ding, J.; Lv, Q.; Ning, C.; Li, Q.; Sun, J.-L. Perovskite CH3NH3PbI3(Cl) Single Crystals: Rapid Solution Growth, Unparalleled Crystalline Quality, and Low Trap Density toward 108 cm–3. J. Am. Chem. Soc. 2016, 138, 9409–9412. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Turedi, B.; Alsalloum, A.Y.; Yang, C.; Zheng, X.; Gereige, I.; AlSaggaf, A.; Mohammed, O.F.; Bakr, O.M. Single-Crystal MAPbI3Perovskite Solar Cells Exceeding 21% Power Conversion Efficiency. ACS Energy Lett. 2019, 6, 1258–1259. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.; Wang, L.; Murali, B.; Ho, K.-T.; Bera, A.; Cho, N.; Kang, C.-F.; Burlakov, V.M.; Pan, J.; Sinatra, L.; et al. Solution-Grown Monocrystalline Hybrid Perovskite Films for Hole-Transporter-Free Solar Cells. Adv. Mater. 2016, 28, 3383–3390. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.-H.; Wu, C.-G. A Method to Prepare Highly Oriented MAPbI3 Crystallites for High Efficiency Perovskite Solar Cell to Achieve 86% Fill Factor. ACS Nano 2018, 10, 10355–10364. [Google Scholar] [CrossRef]
- Saliba, M.; Correa-Baena, J.-P.; Graatzel, M.; Hagfeldt, A.; Abate, A. Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance. Angew. Chem. 2018, 57, 2554–2569. [Google Scholar] [CrossRef]
- MacDonald, G.A.; Yang, M.J.; Berweger, S.; Killgore, J.P.; Kabos, P.; Berry, J.J.; Zhu, K.; DelRio, F.W. Methylammonium lead iodide grain boundaries exhibit depth-dependent electrical properties. Energy Environ. Sci. 2016, 9, 3642–3649. [Google Scholar] [CrossRef]
- Correa-Baena, J.P.; Anaya, M.; Lozano, G.; Tress, W.; Domanski, K.; Saliba, M.; Matsui, T.; Jacobsson, T.J.; Calvo, M.E.; Abate, A.; et al. Unbrokenperovskite: Interplay of morphology, electro-optical properties and ionic movement. Adv. Mater. 2016, 28, 5031–5037. [Google Scholar] [CrossRef]
- Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A.J.; Gupta, G.; Crochet, J.J.; Chhowalla, M.; Tretiak, S.; Alam, M.A.; et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522–525. [Google Scholar] [CrossRef] [Green Version]
- Ciesielski, R.; Schäfer, F.; Hartmann, N.F. Grain Boundaries Act as Solid Walls for Charge Carrier Diffusion in Large Crystal MAPI Thin Films. ACS Appl. Mater. Interfaces 2018, 10, 7974–7981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Yadavalli, S.K.; Lizarazo-Ferro, C.D. Sub-Grain Special Boundaries in Halide Perovskite Thin Films Restrict Carrier Diffusion. ACS Energy Lett. 2018, 11, 2669–2670. [Google Scholar] [CrossRef]
- Xu, T.; Wan, Z.; Tang, H.; Zhao, C.; Lv, S.; Chen, Y.; Huang, W. Carbon quantum dot additive engineering for efficient and stable carbon-based perovskite solar cells. J. Alloy. Compd. 2021, 859, 157784. [Google Scholar] [CrossRef]
- Gueye, M.N.; Carella, A.; Faure-Vincent, J.; Demadrille, R.; Simonato, J.-P. Progress in understanding structure and transport properties of PEDOT-based materials: A critical review. Prog. Mater. Sci. 2020, 108, 100616. [Google Scholar] [CrossRef]
- Kim, Y.H.; Sachse, C.; Machala, M.L.; May, C.; Müller-Meskamp, L.; Leo, K. Highly conductive PEDOT: PSS electrode with optimized solvent and thermal posttreatment for ITO-free organic solar cells. Adv. Funct. Mater. 2011, 21, 1076–1081. [Google Scholar] [CrossRef]
- Wen, Y.; Xu, J. Scientific importance of water-processable PEDOT–PSS and preparation, challenge and new application in sensors of its film electrode: A review. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 1121–1150. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Xue, J.; Meng, L.; Lee, J.-W.; Zhao, Z.; Sun, P.; Cai, L.; Huang, T.; Wang, Z.; Wang, Z.-K.; et al. Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells. Joule 2019, 3, 1464–1477. [Google Scholar] [CrossRef]
- Nardes, A.M.; Kemerink, M.; De Kok, M.M.; Vinken, E.; Maturova, K.; Janssen, R.A.J. Conductivity, work function, and environmental stability of PEDOT:PSS thin films reated with sorbitol. Org. Electron. 2008, 9, 727–734. [Google Scholar] [CrossRef]
- Tang, F.-C.; Chang, J.; Wu, F.-C.; Cheng, H.-L.; Hsu, S.-L.; Chen, J.-S.; Chou, W.-Y. Alignment of poly(3,4-ethylenedioxythiophene) polymer chains in photovoltaic cells by ultraviolet irradiation. J. Mater. Chem. 2012, 22, 22409–22417. [Google Scholar] [CrossRef]
- Anbalagan, A.K.; Gupta, S.; Chaudhary, M.; Kumar, R.R.; Chueh, Y.-L.; Tai, N.-H.; Lee, C.-H. Consequences of gamma-ray irradiation on structural and electronic properties of PEDOT:PSS polymer in air and vacuum environments. RSC Adv. 2021, 11, 20752–20759. [Google Scholar] [CrossRef]
- Sunghal, P.; Rattan, S. Swift Heavy Ion Irradiation as a Tool for Homogeneous Dispersion of Nanographite Platelets within the Polymer Matrices: Toward Tailoring the Properties of PEDOT:PSS/NanographiteNanocomposites. J. Phys. Chem. B 2016, 120, 3403–3413. [Google Scholar] [CrossRef] [PubMed]
- Nardes, A.M.; Janssen, R.J.; Kemerink, M. A morphological model for the solvent-enhanced conductivity of PEDOT:PSS thin films. Adv. Funct. Mater. 2008, 18, 865–871. [Google Scholar] [CrossRef]
- Niu, Q.; Huang, W.; Tong, J.; Lv, H.; Deng, Y.; Ma, Y.; Zhao, Z.; Xia, R.; Zeng, W.; Min, Y.; et al. Understanding the mechanism of PEDOT: PSS modification via solvent on the morphology of perovskitefilms for efficient solar cells. Synth. Met. 2018, 243, 17–24. [Google Scholar] [CrossRef]
- Xia, Y.; Ouyang, J. Significant conductivity enhancement of conductive poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) films through a treatment with organic carboxylic acids and inorganic acids. ACS Appl. Mater. Interfaces 2010, 2, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Sun, K.; Ouyang, J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 2012, 24, 2436–2440. [Google Scholar] [CrossRef] [PubMed]
- Mengistie, D.A.; Ibrahem, M.A.; Wang, P.-C.; Chu, C.-W. Highly Conductive PEDOT:PSS Treated with Formic Acid for ITO-Free Polymer Solar Cells. ACS Appl. Mater. Interfaces 2014, 4, 2292–2299. [Google Scholar] [CrossRef] [PubMed]
- Jeon, N.J.; Lee, J.; Noh, J.H.; Nazeeruddin, M.K.; Grätzel, M.; Seok, S.I. Efficient inorganic-organic hybrid perovskite solar cells based on pyrenearylamine derivatives as hole-transporting materials. J. Am. Chem. Soc. 2013, 135, 19087–19090. [Google Scholar] [CrossRef]
- Marques, A.S.; Szostak, R.; Marchezi, P.E.; Nogueira, A.F. Perovskite solar cells based on polyaniline derivatives as hole transport materials. J. Phys. Energy 2019, 1, 015004. [Google Scholar] [CrossRef]
- Fabretto, M.; Zuber, K.; Jariego-Moncunill, C.; Murphy, P. Measurement Protocols for Reporting PEDOT Thin Film Conductivity and Optical Transmission: A Critical Survey. Macromol. Chem. Phys. 2011, 19, 2173–2180. [Google Scholar] [CrossRef]
- Salim, T.; Sun, S.; Aberishna, Y.; Krishna, A.; Grimsdale, A.C.; Lam, Y.M. Perovskite-Based Solar Cells: Impact of Morphology and Device Architecture on Device Performance. J. Mater. Chem. A 2015, 3, 8943–8969. [Google Scholar] [CrossRef]
- Pascoe, A.R.; Gu, Q.; Rothmann, M.U.; Li, W.; Zhang, Y.; Scully, A.; Lin, X.; Spiccia, L.; Bach, U.; Cheng, Y.-B. Directing Nucleation and Growth Kinetics in Solution-Processed Hybrid Perovskite Thin-Films. Sci. China Mater. 2017, 60, 617–628. [Google Scholar] [CrossRef] [Green Version]
- Oku, T.; Yamanouchi, J.; Umemoto, Y.; Suzuki, A. Dendritic Structures of Photovoltaic Perovskite Crystals. Mater. Jpn. 2018, 57, 601. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Li, M.; Siffalovic, P.; Cao, G.; Tian, J. From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ. Sci. 2019, 12, 518–549. [Google Scholar] [CrossRef]
- Zhou, Y.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A.J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J.; et al. A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics. Science 2012, 336, 327–332. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spivak, Y.; Muratova, E.; Moshnikov, V.; Tuchkovsky, A.; Vrublevsky, I.; Lushpa, N. Improving the Conductivity of the PEDOT:PSS Layers in Photovoltaic Cells Based on Organometallic Halide Perovskites. Materials 2022, 15, 990. https://doi.org/10.3390/ma15030990
Spivak Y, Muratova E, Moshnikov V, Tuchkovsky A, Vrublevsky I, Lushpa N. Improving the Conductivity of the PEDOT:PSS Layers in Photovoltaic Cells Based on Organometallic Halide Perovskites. Materials. 2022; 15(3):990. https://doi.org/10.3390/ma15030990
Chicago/Turabian StyleSpivak, Yuliya, Ekaterina Muratova, Vyacheslav Moshnikov, Alexander Tuchkovsky, Igor Vrublevsky, and Nikita Lushpa. 2022. "Improving the Conductivity of the PEDOT:PSS Layers in Photovoltaic Cells Based on Organometallic Halide Perovskites" Materials 15, no. 3: 990. https://doi.org/10.3390/ma15030990
APA StyleSpivak, Y., Muratova, E., Moshnikov, V., Tuchkovsky, A., Vrublevsky, I., & Lushpa, N. (2022). Improving the Conductivity of the PEDOT:PSS Layers in Photovoltaic Cells Based on Organometallic Halide Perovskites. Materials, 15(3), 990. https://doi.org/10.3390/ma15030990