Fabrication of Green Diatomite/Chitosan-Based Hybrid Foams with Dye Sorption Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Porous Diatomite–Chitosan Materials
2.3. Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, M.; Xu, Y.; Zhang, C.; Rong, H.; Zeng, G. New trends in removing heavy metals from wastewater. Appl. Microbiol. Biotechnol. 2016, 100, 6509–6518. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.; Diao, Y.; Jain, R.; Rene, E.R.; Dutta, S. Adsorption of Cadmium from Aqueous Solutions onto Coffee Grounds and Wheat Straw: Equilibrium and Kinetic Study. J. Environ. Eng. 2015, 142, C4015014. [Google Scholar] [CrossRef]
- Sanchez, A.G.; Alvarez, E.; Jimenez De Blas, O. Sorption of heavy metals from industrial waste water by low-cost mineral silicates. Clay Miner. 1999, 34, 469–477. [Google Scholar] [CrossRef]
- Meshko, V.; Markovska, L.; Mincheva, M.; Rodrigues, A.E. Adsorption of basic dyes on granular acivated carbon and natural zeolite. Water Res. 2001, 35, 3357–3366. [Google Scholar] [CrossRef]
- Shevade, S.; Ford, R.G. Use of synthetic zeolites for arsenate removal from pollutant water. Water Res. 2004, 38, 3197–3204. [Google Scholar] [CrossRef]
- Verdolotti, L.; Oliviero, M.; Lavorgna, M.; Iannace, S.; Camino, G.; Vollaro, P.; Frache, A. On revealing the effect of alkaline lignin and ammonium polyphosphate additives on fire retardant properties of sustainable zein-based composites. Polym. Degrad. Stab. 2016, 134, 115–125. [Google Scholar] [CrossRef]
- Verdolotti, L.; Salerno, A.; Lamanna, R.; Nunziata, A.; Netti, P.; Iannace, S. A novel hybrid PU-alumina flexible foam with superior hydrophilicity and adsorption of carcinogenic compounds from tobacco smoke. Microporous Mesoporous Mater. 2012, 151, 79–87. [Google Scholar] [CrossRef]
- Verdolotti, L.; Di Maio, E.; Lavorgna, M.; Iannace, S. Hydration-induced reinforcement of rigid polyurethane-cement foams: Mechanical and functional properties. J. Mater. Sci. 2012, 47, 6948–6957. [Google Scholar] [CrossRef]
- Galzerano, B.; Capasso, I.; Verdolotti, L.; Lavorgna, M.; Vollaro, P.; Caputo, D.; Iannace, S.; Liguori, B. Design of sustainable porous materials based on 3D-structured silica exoskeletons, Diatomite: Chemico-physical and functional properties. Mater. Des. 2018, 145, 196–204. [Google Scholar] [CrossRef]
- Yuan, P.; Liu, D.; Zhou, J.; Tian, Q.; Song, Y.; Wei, H.; Wang, S.; Zhou, J.; Deng, L.; Du, P. Identification of the occurrence of minor elements in the structure of diatomaceous opal using FIB and TEM-EDS. Am. Mineral. 2019, 104, 1323–1335. [Google Scholar] [CrossRef]
- Chang, M.Y.; Juang, R.S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. J. Colloid Interface Sci. 2004, 278, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Wang, C.; Shu, Y.; Yan, X.; Li, L. Utilization of diatomite/chitosan–Fe (III) composite for the removal of anionic azo dyes from wastewater: Equilibrium, kinetics and thermodynamics. Colloids Surf. A Physicochem. Eng. Asp. 2015, 468, 129–139. [Google Scholar] [CrossRef]
- Yuan, P.; Wu, D.Q.; He, H.P.; Lin, Z.Y. The hydroxyl species and acid sites on diatomite surface: A combined IR and Raman study. Appl. Surf. Sci. 2004, 468, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Verdolotti, L.; Lirer, S.; Flora, A.; Evangelista, A.; Iannace, S.; Lavorgna, M. Permeation grouting of a fine-grained pyroclastic soil. Proc. Inst. Civ. Eng.-Ground Improv. 2007, 10, 135–145. [Google Scholar]
- Molvinger, K.; Quignard, F.; Brunel, D.; Boissière, M.; Devoisselle, J.M. Porous chitosan-silica hybrid microspheres as a potential catalyst. Chem. Mater. 2004, 16, 3367–3372. [Google Scholar] [CrossRef]
- Lee, H.-H.; Profile, S.; Kim, H.-J.; Kim, H.-W.; Jang, J.-H.; Lee, E.-J.; Shin-Hee, A.E.; Ae, J.; Kim, H.-E.; Hae-Won, A.E.; et al. Silica xerogel-chitosan nano-hybrids for use as drug eluting bone replacement Intrinsically Bioactive Biomaterials for Regenerative Medicine View project Silica xerogel-chitosan nano-hybrids for use as drug eluting bone replacement. Artic. J. Mater. Sci. Mater. Med. 2009, 21, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Romer, F.; Connell, L.; Walter, C.; Saiz, E.; Yue, S.; Jones, J.R. Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration. J. Mater. Chem. B 2015, 3, 7560–7576. [Google Scholar] [CrossRef] [Green Version]
- Salzano de Luna, M.; Ascione, C.; Santillo, C.; Verdolotti, L.; Lavorgna, M.; Buonocore, G.G.; Castaldo, R.; Filippone, G.; Xia, H.; Ambrosio, L. Optimization of dye adsorption capacity and mechanical strength of chitosan aerogels through crosslinking strategy and graphene oxide addition. Carbohydr. Polym. 2019, 211, 195–203. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Bikiaris, D.N.; Mitropoulos, A.C. Chitosan adsorbents for dye removal: A review. Polym. Int. 2017, 66, 1800–1811. [Google Scholar] [CrossRef]
- Salzano de Luna, M.; Altobelli, R.; Gioiella, L.; Castaldo, R.; Scherillo, G.; Filippone, G. Role of polymer network and gelation kinetics on the mechanical properties and adsorption capacity of chitosan hydrogels for dye removal. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 1843–1849. [Google Scholar] [CrossRef]
- Salzano de Luna, M.; Castaldo, R.; Altobelli, R.; Gioiella, L.; Filippone, G.; Gentile, G.; Ambrogi, V. Chitosan hydrogels embedding hyper-crosslinked polymer particles as reusable broad-spectrum adsorbents for dye removal. Carbohydr. Polym. 2017, 177, 347–354. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Li, J.; Li, W.J.; Li, Y. Adsorption of sunset yellow FCF from aqueous solution by chitosan-modified diatomite. Water Sci. Technol. 2015, 72, 1861–1868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piscitelli, F.; Buonocore, G.G.; Lavorgna, M.; Verdolotti Pricl, L.S.; Gentile, G.; Mascia, L. Peculiarities in the structure—Properties relationship of epoxy-silica hybrids with highly organic siloxane domains. Polymer 2015, 63, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Salih, S.S.; Mohammed, H.N.; Abdullah, G.H.; Kadhom, M.; Ghosh, T.K. Simultaneous Removal of Cu(II), Cd(II), and Industrial Dye onto a Composite Chitosan Biosorbent. J. Polym. Environ. 2020, 28, 354–365. [Google Scholar] [CrossRef]
- Caner, N.; Sarl, A.; Tüzen, M. Adsorption Characteristics of Mercury(II) Ions from Aqueous Solution onto Chitosan-Coated Diatomite. Ind. Eng. Chem. Res. 2015, 54, 7524–7533. [Google Scholar] [CrossRef]
- Yang, Q.; Gong, L.; Huang, L.; Xie, Q.; Zhong, Y.; Chen, N. Adsorption of as(V) from aqueous solution on chitosan-modified diatomite. Int. J. Environ. Res. Public Health 2020, 17, 429. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Fu, Y.; Xu, X.; Huang, Y.; Hu, J.; Wu, Y. Preparation of new diatomite-chitosan composite materials and their adsorption properties and mechanism of Hg(II). R. Soc. Open Sci. 2017, 4, 170829. [Google Scholar]
- Yazdi, M.G.; Ivanic, M.; Mohamed, A.; Uheida, A. Surface modified composite nanofibers for the removal of indigo carmine dye from polluted water. Rsc Adv. 2018, 8, 24588–24598. [Google Scholar] [CrossRef] [Green Version]
- Maidana, N.I.; Seeligmann, C. Diatomeas (Bacillariophyceae) de Ambientes Acuáticos de Altura de la Provincia de Catamarca, Argentina II. Bol. Soc. Argent. Bot. 2006, 41, 1–13. [Google Scholar]
- Castelló, M.E.; Anbinder, P.S.; Amalvy, J.I.; Peruzzo, P.J. Production and characterization of chitosan and glycerol-chitosan films. MRS Adv. 2018, 3, 3601–3610. [Google Scholar] [CrossRef]
- Verdolotti, L.; Liguori, B.; Capasso, I.; Errico, A.; Caputo, D.; Lavorgna, M.; Iannace, S. Synergistic effect of vegetable protein and silicon addition on geopolymeric foams properties. J. Mater. Sci. 2014, 50, 2459–2466. [Google Scholar] [CrossRef]
- Liguori, B.; Capasso, I.; Romeo, V.; D’Auria, M.; Lavorgna, M.; Caputo, D.; Iannace, S.; Verdolotti, L. Hybrid geopolymeric foams with diatomite addition: Effect on chemico-physical properties. J. Cell. Plast. 2017, 53, 525–536. [Google Scholar] [CrossRef]
- Akyuz, L.; Kaya, M.; Koc, B.; Mujtaba, M.; Ilk, S.; Labidi, J.; Salaberria, A.M.; Cakmak, Y.S.; Yildiz, A. Diatomite as a novel composite ingredient for chitosan film with enhanced physicochemical properties. Int. J. Biol. Macromol. 2017, 105, 1401–1411. [Google Scholar] [CrossRef] [PubMed]
- Finocchio, E.; Baccini, I.; Cristiani, C.; Dotelli, G.; Gallo Stampino, P.; Zampori, L. Hybrid organo-inorganic clay with nonionic interlayers. Mid- and near-IR spectroscopic studies. J. Phys. Chem. A 2011, 115, 7484–7493. [Google Scholar] [CrossRef] [PubMed]
- Daniel-da-Silva, A.L.; Salgueiro, A.M.; Trindade, T. Effects of Au nanoparticles on thermoresponsive genipin-crosslinked gelatin hydrogels. Gold Bull. 2013, 46, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Brugnerotto, J.; Lizardi, J.; Goycoolea, F.M.; Argüelles-Monal, W.; Desbrières, J.; Rinaudo, M. An infrared investigation in relation with chitin and chitosan characterization. Polymer 2001, 42, 3569–3580. [Google Scholar] [CrossRef]
- Tamburaci, S.; Tihminlioglu, F. Diatomite reinforced chitosan composite membrane as potential scaffold for guided bone regeneration. Mater. Sci. Eng. C 2017, 80, 222–231. [Google Scholar] [CrossRef]
- Yeng, M.; Husseinsyah, S.; Sam, S.T. Corn Cob Filled Chitosan Biocomposite Films. Adv. Mater. Res. 2013, 747, 649–652. [Google Scholar] [CrossRef]
- De Britto, D.; Campana-Filho, S.P. Kinetics of the thermal degradation of chitosan. Thermochim. Acta 2007, 465, 73–82. [Google Scholar] [CrossRef]
- Innocenzi, P. Infrared spectroscopy of sol-gel derived silica-based films: A spectra-microstructure overview. J. Non Cryst. Solids 2003, 316, 309–319. [Google Scholar] [CrossRef]
- Galzerano, B.; Verdolotti, L.; Capasso, I.; Liguori, B. Setting up the production process of diatomite-based ceramic foams. Mater. Manuf. Process. 2017, 33, 1648–1653. [Google Scholar] [CrossRef]
- Capasso, I.; Liguori, B.; Verdolotti, L.; Caputo, D.; Lavorgna, M.; Tervoort, E. Process strategy to fabricate a hierarchical porosity gradient in diatomite-based foams by 3D printing. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Leal-Cruz, A.L.; Pech-Canul, M.I. In situ synthesis of Si3N4 in the Na2SiF6–N2 system via CVD: Kinetics and mechanism of solid-precursor decomposition. Solid State Ion. 2007, 177, 3529–3536. [Google Scholar] [CrossRef]
- Khalid, A.; Arshad, M.; Crowley, D. Bioaugmentation of Azo Dyes; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–37. [Google Scholar]
- Galzerano, B.; Aprea, P.; Liguori, B.; Verdolotti, L. Removal of Cd(II) from wastewater by sustainable absorber: Composite diatomite-based foams. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 1981, p. 020120. [Google Scholar]
Hybrids | ρapp kg/m3 | OP% | CP% | WA% |
---|---|---|---|---|
PD | 502 ± 30 | 58.97 ± 5 | 22.38 ± 2 | 124.97 ± 20 |
PDC60 | 533 ± 15 | 57.73 ± 7 | 19.04 ± 3 | 118.15 ± 25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galzerano, B.; Cabello, C.I.; Muñoz, M.; Buonocore, G.G.; Aprea, P.; Liguori, B.; Verdolotti, L. Fabrication of Green Diatomite/Chitosan-Based Hybrid Foams with Dye Sorption Capacity. Materials 2020, 13, 3760. https://doi.org/10.3390/ma13173760
Galzerano B, Cabello CI, Muñoz M, Buonocore GG, Aprea P, Liguori B, Verdolotti L. Fabrication of Green Diatomite/Chitosan-Based Hybrid Foams with Dye Sorption Capacity. Materials. 2020; 13(17):3760. https://doi.org/10.3390/ma13173760
Chicago/Turabian StyleGalzerano, Barbara, Carmen I. Cabello, Mercedes Muñoz, Giovanna G. Buonocore, Paolo Aprea, Barbara Liguori, and Letizia Verdolotti. 2020. "Fabrication of Green Diatomite/Chitosan-Based Hybrid Foams with Dye Sorption Capacity" Materials 13, no. 17: 3760. https://doi.org/10.3390/ma13173760
APA StyleGalzerano, B., Cabello, C. I., Muñoz, M., Buonocore, G. G., Aprea, P., Liguori, B., & Verdolotti, L. (2020). Fabrication of Green Diatomite/Chitosan-Based Hybrid Foams with Dye Sorption Capacity. Materials, 13(17), 3760. https://doi.org/10.3390/ma13173760