Prediction of Bonding Strength of Externally Bonded SRP Composites Using Artificial Neural Networks
Abstract
:1. Introduction
2. Bond-Slip Models of Externally Bonded Composites
3. Artificial Neural Networks
3.1. Establishing the Working ANN Model
3.1.1. Initial Model
3.1.2. Optimization of the Initial Model
3.1.3. Training and Testing of the Optimized Model
3.1.4. Working ANN Model
3.2. Sensitivity Analysis
4. Results
4.1. Training and Optimization of the Initial ANN Model
4.2. Training the Optimized ANN Model
4.3. Testing the Optimized ANN Model
4.4. Training of the Working ANN Model
4.5. Sensitivity Analysis
5. Discussion of Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rizkalla, S.; Rosenboom, O.; Miller, A.; Walter, C. Value Engineering and Cost Effectiveness of Various Fiber Reinforced Polymer (FRP) Repair Systems; Technical Report; Department of Civil Engineering, North Carolina State University Raleigh: Raleigh, NC, USA, June 2007. [Google Scholar]
- Mitolidis, G.J.; Salonikios, T.N.; Kappos, A.J. Mechanical and Bond Characteristics of SRP and CFRP Reinforcement—A Comparative Research. Open Constr. Build. Technol. J. 2008, 2, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Papakonstantinou, C.G.; Kakae, C.; Gryllakis, N. Can Existing Design Codes Be Used to Design Flexural Reinforced Concrete Elements Strengthened with Externally Bonded Novel Materials? IOP Conf. Ser. Mater. Sci. Eng. 2018, 371, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Krzywoń, R. Assessment of existing bond models for externally bonded SRP composites. Appl. Sci. 2020, 10, 8593. [Google Scholar] [CrossRef]
- Kekez, S.; Kubica, J. Application of Artificial Neural Networks for Prediction of Mechanical Properties of CNT/CNF Reinforced Concrete. Materials 2021, 14, 5637. [Google Scholar] [CrossRef]
- Cihan, M.T. Prediction of Concrete Compressive Strength and Slump by Machine Learning Methods. Adv. Civ. Eng. 2019, 1, 3069046. [Google Scholar] [CrossRef]
- Kröse, B.; van der Smagt, P. An Introduction to Neural Networks; University of Amsterdam: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Matos, M.A.S.; Pinho, S.T.; Tagarielli, V.L. Application of machine learning to predict the multiaxial strain sensing response of CNT polymer composites. Carbon 2019, 146, 265–275. [Google Scholar] [CrossRef]
- Fahmy, A.S.; EL Madawy, M.E.; Cobran, Y.A. Using artificial neural networks in the design of orthotropic bridge decks. Alex. Eng. J. 2016, 55, 3195–3203. [Google Scholar] [CrossRef]
- Sattari, M.A.; Roshani, G.H.; Hanus, R.; Nazemi, E. Applicability of time-domain feature extraction methods and artificial intelligence in two-phase flow meters based on gamma-ray absorption technique. Measurement 2021, 168, 108474. [Google Scholar] [CrossRef]
- Shin, J.; Scott, D.W.; Stewart, L.K.; Jeon, J.S. Multi-hazard assessment and mitigation for seismically deficient RC building frames using artificial neural network models. Eng. Str. 2020, 207, e110204. [Google Scholar] [CrossRef]
- Cao, M.; Alkayem, N.F.; Pan, L.; Novak, D. Advanced Methods in Neural Networks-Based Sensitivity Analysis with their Applications in Civil Engineering. In Artificial Neural Networks–Models and Applications; Chapter 13; IntechOpen Book Series; IntechOpen: London, UK, 2016; pp. 335–353. [Google Scholar] [CrossRef] [Green Version]
- Köroğlu, M.A. Artificial neural network for predicting the flexural bond strength of FRP bars in concrete. Sci. Eng. Compos. Mater. 2019, 26, 12–29. [Google Scholar] [CrossRef]
- Mansouri, I.; Kisi, O. Prediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approaches. Compos. Part B 2015, 70, 247–255. [Google Scholar] [CrossRef]
- Mashrei, M.A.; Seracino, R.; Rahman, M.S. Application of artificial neural networks to predict the bond strength of FRP-to-concrete joints. Constr. Build. Mater. 2013, 40, 812–821. [Google Scholar] [CrossRef]
- Cascardi, A.; Micelli, F. ANN-Based Model for the Prediction of the Bond Strength between FRP and Concrete. Fibers 2021, 9, 46. [Google Scholar] [CrossRef]
- Jahangir, H.; Eidgahee, D.R. A new and robust hybrid artificial bee colony algorithm–ANN model for FRP-concrete bond strength evaluation. Compos. Struct. 2021, 257, 113160. [Google Scholar] [CrossRef]
- Figeys, W.; Schueremans, L.; Van Gemert, D.; Brosens, K. A new composite for external reinforcement: Steel cord reinforced polymer. Constr. Build. Mater. 2008, 22, 1929–1938. [Google Scholar] [CrossRef]
- Matana, M.; Nanni, A.; Dharani, L.; Silva, P.; Tunis, G. Bond Performance of Steel Reinforced Polymer and Steel Reinforced Grout. In Proceedings of the International Symposium on Bond Behaviour of FRP in Structures 381 (BBFS 2005), IFRPC, Hong Kong, China, 7–9 December 2005. [Google Scholar]
- Mitolidis, G.I.; Kappos, A.J.; Salonikios, T.N. Bond tests 382 of SRP and CFRP–strengthened concrete prisms. In Proceedings of the Fourth International Conference on FRP Composites in Civil Engineering (CICE2008), Zurich, Switzerland, 22–24 July 2008. [Google Scholar]
- Napoli, A.; de Felice, G.; De Santis, S.; Realfonzo, R. Bond behaviour of Steel Reinforced Polymer strengthening systems. Compos. Struct. 2016, 152, 499–515. [Google Scholar] [CrossRef]
- Ascione, F.; Napoli, A.; Realfonzo, R. Experimental and analytical investigation on the bond of SRP systems to concrete. Compos. Struct. 2020, 242, 112090. [Google Scholar] [CrossRef]
- Ascione, F.; Lamberti, M.; Napoli, A.; Razaqpur, G.; Realfonzo, R. An experimental investigation on the bond behavior of steel reinforced polymers on concrete substrate. Compos. Struct. 2017, 181, 58–72. [Google Scholar] [CrossRef]
- Ascione, F.; Lamberti, M.; Napoli, A.; Realfonzo, R. Experimental bond behavior of Steel Reinforced Grout 400 systems for strengthening concrete elements. Constr. Build. Mater. 2020, 232, 117105. [Google Scholar] [CrossRef]
- Teng, J.G.; Chen, J.F.; Simth, S.T.; Lam, L. FRP-Strengthened RC Structures; John Wiley & Sons Ltd.: Chichester, UK, 2002. [Google Scholar]
- Santandrea, M.; Focacci, F.; Mazzotti, C.; Ubertini, F.; Carloni, C. Determination of the interfacial cohesive 310 material law for SRG composites bonded to a masonry substrate. Eng. Fail. Anal. 2020, 111, 104322. [Google Scholar] [CrossRef]
- Seracino, R. Axial intermediate crack debonding of plates glued to concrete surfaces. In Proceedings of the FRP Composites in Civil Engineering, Hong Kong, China, 12–15 December 2001; pp. 365–372. [Google Scholar]
- Tanaka, T. Shear Resisting Mechanism of Reinforced Concrete Beams with CFS as Shear Reinforcement. Ph.D. Thesis, Hokkaido University, Kitaku, Japan, 1996. [Google Scholar]
- Hiroyuki, Y.; Wu, Z. Analysis of debonding fracture properties of CFS strengthened member subject to tension. In Proceedings of the 3rd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Japan Concrete Institute, Sapporo, Japan, 14–16 October 1997; pp. 287–294. [Google Scholar]
- Maeda, T.; Asano, Y.; Sato, Y.; Ueda, T.; Kakuta, Y. A study on bond mechanism of carbon fiber sheet. In Proceedings of the 3rd International Symposium Non-Metallic (FRP) Reinforcement for Concrete Structures, Japan Concrete Institute, Sapporo, Japan, 14–16 October 1997; pp. 279–285. [Google Scholar]
- Taljsten, B. Strengthening of concrete prisms using the plate bonding technique. Int. J. Fract. 1996, 82, 253–266. [Google Scholar] [CrossRef]
- Niedermeier, R. Stellungnahme zur Richtlinie für das Verkleben von Beton-bauteilen durch Ankleben von Stahllaschen. In Schreiben 1390 Vom 30.10.1996 Des Lehrstuhls Für Massivbau; Technische Universität München: Munich, Germany, 1996. [Google Scholar]
- Yuan, H.; Wu, Z. Interfacial fracture theory in structures strengthened with composite of continuous fiber. In Proceedings of the Symposium of China and Japan: Science and Technology of the 21st Century, Tokyo, Japan, 3–4 December 1998; pp. 142–155. [Google Scholar]
- Lu, X.Z.; Teng, J.G.; Ye, L.P.; Jiang, J.J. Bond-slip models for FRP sheets/plates bonded to concrete. Eng. Struct. 2005, 27, 920–937. [Google Scholar] [CrossRef]
- Dai, J.; Ueda, T.; Sato, Y. Development of the nonlinear bond stress-slip model of fiber reinforced plastics sheet-concrete interfaces with a simple method. J. Compos. Constr. 2005, 9, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Brosens, K.; van Gemert, D. Anchoring stresses between concrete and carbon fiber reinforced laminates. In Proceedings of the 3rd International Symposium Non-Metallic (FRP) Reinforcement for Concrete Structures, Japan Concrete Institute, Sapporo, Japan, 14–16 October 1997; pp. 271–278. [Google Scholar]
- Khalifa, A.; Gold, W.J.; Nanni, A.; Aziz, A. Contribution of externally bonded FRP to shear capacity of RC flexural members. J. Compos. Constr. 1998, 2, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.X.; Yue, Q.R.; Hu, Y.C. Experimental study on bond performance between carbon fibre sheets and concrete. J. Build. Struct. 2001, 22, 36–42. [Google Scholar]
- Adhikary, B.B.; Mutsuyoshi, H. Study on the bond between concrete and externally bonded CFRP sheet. In Proceedings of the 6th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures (FRPRCS-5), Cambridge, UK, 16–18 July 2001; pp. 371–378. [Google Scholar]
- Sato, Y.; Asano, Y.; Ueda, T. Fundamental study on bond mechanism of carbon fiber sheet. Concr. Libr. Int. JSCE 2001, 37, 97–115. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.F.; Teng, J.G. Anchorage strength models for FRP and steel plates bonded to concrete. J. Struct. Eng. 2001, 127, 784–791. [Google Scholar] [CrossRef]
- De Lorenzis, L.; Miller, B.; Nanni, A. Bond of fiber-reinforced polymer laminates to concrete. ACI Mater. J. 2001, 98, 256–264. [Google Scholar]
- Seracino, R.; Saifulnaz, M.R.R.; Ohlers, D.J. Generic debonding resistance of EB and NSM plate-to-concrete joints. J. Compos. Constr. 2007, 11, 62–70. [Google Scholar] [CrossRef]
- Japan Concrete Institute. Technical report of technical committee on retrofit technology. In Proceedings of the International Symposium on Latest Achievement of Technology and Research on Retrofitting Concrete Structures, JCI, Kyoto, Japan, 14–15 July 2003. [Google Scholar]
- SIA Norm 166. Klebebewehrung; Schweizerischer Ingenieur-und Architekten-Verein: Zurich, Switzerland, 2004; p. 44. [Google Scholar]
- CNR-DT 200 R1. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures; CNR Advisory Committee on Technical Recommendations for Construction: Rome, Italy, 2013; p. 152. [Google Scholar]
- Fib Bulletin 90. Externally Applied FRP Reinforcement for Concrete Structures; Fédération Internationale Du Béton (Fib): Lausanne, Switzerland, 2019; p. 229. [Google Scholar]
- Garson, G.D. Interpreting neural network connection weights. AI Expert 1991, 6, 46–51. [Google Scholar]
- Mukhopadhyaya, P.; Swamy, N. Interface shear stress: A new design criterion for plate debonding. J. Compos. Constr. 2001, 5, 35–43. [Google Scholar] [CrossRef]
- Shahawy, M.A.; Arockiasamy, M.; Beitelman, T.; Sowrirajan, R. Reinforced concrete rectangular beams strengthened with CFRP laminates. Compos. Part B 1996, 27, 225–233. [Google Scholar] [CrossRef]
- Bizindavyi, L.; Neale, K.W. Transfer Lengths and Bond Strengths for Composites Bonded to Concrete. J. Compos. Constr. 1999, 3, 153–160. [Google Scholar] [CrossRef]
Model | Mean | R |
---|---|---|
Tanaka [28] | 0.699 | 0.220 |
Hiroyuki and Wu [29] | 0.746 | 0.503 |
Maeda et al. [30] | 1.14 | 0.751 |
Taljsten [31] | 0.761 | 0.748 |
Nidermeier [32] | 0.763 | 0.629 |
Yuan and Wu [33] | 0.763 | 0.747 |
Lu et al. [34] | 0.873 | 0.676 |
Dai et al. [35] | 1.55 | 0.734 |
Brosens and van Germet [36] | 0.937 | 0.408 |
Khalifa et al. [37] | 0.754 | 0.729 |
Yang et al. [38] | 0.528 | 0.657 |
Adhikary and Mutsuyoshi [39] | 2.00 | 0.476 |
Sato et al. [40] | 1.81 | 0.573 |
Chen and Teng [41] | 0.882 | 0.726 |
DeLorenzis et al. [42] | 1.63 | 0.728 |
Seracino et al. [43] | 0.752 | 0.716 |
JCI 2003 [44] | 0.941 | 0.738 |
SIA 166/2004 [45] | 0.911 | 0.756 |
CNR-DT200R1/13 [46] | 0.928 | 0.718 |
Fib Bulletin 90/2019 [47] | 0.962 | 0.755 |
Reference | Number of Specimens | b [mm] | fc [MPa] | bf [mm] | tf [mm] | L [mm] | Ef [GPa] |
---|---|---|---|---|---|---|---|
Figeys [18] 1 | 7 | 100 | 35 | 95 | 0.601 | 150–200 | 177.6 |
Mantana [19] 1 | 12 | 191 | 14.8 | 51 | 0.483 | 102–305 | 179.1 |
Mitoldis [20] 1 | 8 | 100 | 22.4 | 50–80 | 0.562 | 150–300 | 221.4 |
Napoli [21] 1 | 19 | 200 | 15.2–39.7 | 100 | 0.084–0.381 | 150–300 | 206.6 |
Ascione [22] 1 | 129 | 200 | 13–45 | 20–100 | 0.084–0.381 | 100–350 | 190 |
Ascione [23] 1 | 62 | 200 | 19.3–25.6 | 100 | 0.084–0.381 | 100–350 | 182.1–183.4 |
Ascione [24] 2 | 83 | 200 | 13–40 | 50–100 | 0.084–0.254 | 100–350 | 182.1–183.4 |
Model | R Training | R Validation | R Total | MSE | RMSE |
---|---|---|---|---|---|
Initial | 0.84959 | 0.60249 | 0.82339 | 0.0106 | 0.00991 |
Optimized | 0.88602 | 0.75031 | 0.8675 | 0.0099 | 0.0076 |
Model | R Training | R Validation | R Testing | R Total | MSE | RMSE |
---|---|---|---|---|---|---|
Working | 0.92367 | 0.90783 | 0.87864 | 0.91338 | 0.0073 | 0.00023 |
Hidden/Input | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | −0.636 | 0.707 | −0.534 | −0.392 | 0.487 | −0.315 | −0.667 | −0.350 | 0.735 | −0.294 | 0.151 |
2 | 0.220 | −0.179 | −0.942 | 0.458 | −0.140 | 0.648 | −0.123 | 0.243 | 1.164 | 0.768 | −0.725 |
3 | 0.869 | −0.322 | 0.604 | 0.374 | −0.508 | −0.695 | 0.225 | −0.248 | 0.683 | 0.792 | 0.612 |
4 | 0.808 | −0.866 | −0.555 | −0.363 | −0.298 | −0.214 | 0.564 | 0.361 | −0.586 | 0.244 | −0.321 |
5 | 0.937 | 0.329 | 0.305 | 0.125 | 0.641 | 0.328 | −0.399 | −1.250 | 0.453 | 0.501 | −0.474 |
6 | −0.612 | −0.658 | 0.017 | 0.398 | 0.309 | −0.303 | −0.459 | −0.706 | −0.617 | 0.799 | 0.622 |
7 | 0.026 | −0.190 | −0.592 | 0.073 | −0.202 | −0.638 | −0.662 | −0.539 | −0.247 | −0.402 | −0.796 |
8 | −0.745 | 0.763 | 0.816 | 0.029 | −0.570 | −0.670 | 0.096 | 0.240 | −0.762 | −0.548 | 0.257 |
9 | 0.374 | 0.309 | 0.272 | −0.685 | 0.694 | −0.344 | −0.631 | 0.571 | 0.739 | −0.310 | 0.234 |
10 | −0.789 | −0.136 | 0.101 | 0.353 | −0.799 | 0.067 | −0.632 | −0.826 | −0.024 | 0.026 | −0.464 |
11 | 0.297 | −0.317 | −0.279 | 0.447 | −0.384 | 0.813 | −0.200 | −0.520 | 0.846 | −0.641 | 0.443 |
12 | −0.195 | −0.258 | −0.439 | 0.809 | 0.615 | 0.047 | 0.045 | −0.139 | 1.389 | −1.057 | 1.407 |
13 | −0.969 | −0.416 | 0.948 | −0.283 | 0.186 | −0.755 | 0.097 | −0.434 | 0.055 | −0.269 | −0.401 |
14 | 0.738 | 0.347 | 0.001 | −0.245 | −0.101 | 0.154 | 0.046 | −0.110 | −0.466 | 1.051 | 0.266 |
15 | 0.584 | −0.654 | −0.688 | −0.625 | 0.424 | 0.229 | 0.231 | 0.091 | 0.573 | 0.209 | −0.645 |
16 | −0.701 | 0.048 | 0.123 | 0.455 | −0.953 | 0.754 | −0.150 | 0.071 | −0.883 | 0.602 | −0.331 |
17 | 0.909 | −0.300 | −0.557 | −0.173 | −0.024 | −0.199 | 1.039 | 0.753 | 0.426 | −0.065 | 0.451 |
18 | −0.500 | −0.339 | −1.039 | −0.644 | −0.327 | 0.003 | −0.076 | −1.405 | 0.507 | −0.472 | 0.472 |
19 | 0.321 | −0.838 | −0.861 | 0.110 | 0.399 | 0.605 | −0.564 | 0.524 | 0.567 | −0.955 | 0.532 |
20 | 0.206 | 0.258 | −0.391 | −0.450 | 0.749 | −0.818 | 0.283 | 0.408 | 0.222 | 0.225 | −0.370 |
21 | 0.901 | 0.192 | 0.369 | −0.427 | 0.743 | 0.360 | 0.161 | 0.392 | −1.031 | −0.399 | −0.945 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kekez, S.; Krzywoń, R. Prediction of Bonding Strength of Externally Bonded SRP Composites Using Artificial Neural Networks. Materials 2022, 15, 1314. https://doi.org/10.3390/ma15041314
Kekez S, Krzywoń R. Prediction of Bonding Strength of Externally Bonded SRP Composites Using Artificial Neural Networks. Materials. 2022; 15(4):1314. https://doi.org/10.3390/ma15041314
Chicago/Turabian StyleKekez, Sofija, and Rafał Krzywoń. 2022. "Prediction of Bonding Strength of Externally Bonded SRP Composites Using Artificial Neural Networks" Materials 15, no. 4: 1314. https://doi.org/10.3390/ma15041314
APA StyleKekez, S., & Krzywoń, R. (2022). Prediction of Bonding Strength of Externally Bonded SRP Composites Using Artificial Neural Networks. Materials, 15(4), 1314. https://doi.org/10.3390/ma15041314