A New Index of Energy Dissipation Considering Time Factor under the Impact Loads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Split Hopkinson Pressure Bars (SHPB) Test System
2.2. Specimen Preparation
2.3. Preparation of SHPB System before Formal Tests
2.4. Calculation of the Strain and Stress
3. Results and Analysis
3.1. Energy Analysis
3.2. The Degree of Crush Ku
4. Conclusions
- (1)
- The changing trend of the new index (energy time density) and energy consumption density are similar; the peak point is more prominent and appears around 180 μs. The new index is more sensitive to energy dissipation.
- (2)
- There are linear trends in the new index and energy consumption density with strain. The correlation coefficients R2 of energy time density and the R2 of energy consumption density are 0.96~0.99 and 0.88~0.99, and the correlation between the new index (energy time density) and strain rate is substantial.
- (3)
- The fractal dimension is not highly correlated with strain and energy time density in this study. The degree of crush Ku can quantify fracture characteristics of the rock. The degree of crush Ku is 0.024 to 0.179 under the dynamic impact tests. The rock crushing degree’s evaluation effect is better than the fractal dimension.
- (4)
- The Ku increases as the strain rate and the energy time density increase. In most cases, the energy time density achieved better prediction results than the strain rate. The correlation coefficients R2 are 0.31~0.79 and 0.41~0.83, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Liao, Z.Y.; Zhu, J.B.; Xia, K.W.; Tang, C.A. Determination of Dynamic Compressive and Tensile Behavior of Rocks from Numerical Tests of Split Hopkinson Pressure and Tension Bars. Rock Mech. Rock Eng. 2016, 49, 1–18. [Google Scholar] [CrossRef]
- Li, X.; Zou, Y.; Zhou, Z. Numerical Simulation of the Rock SHPB Test with a Special Shape Striker Based on the Discrete Element Method. Rock Mech. Rock Eng. 2014, 47, 1693–1709. [Google Scholar] [CrossRef]
- Xu, X.; Chi, L.; Yang, J.; Yu, Q. Experimental Study on the Temporal and Morphological Characteristics of Dynamic Tensile Fractures in Igneous Rocks. Appl. Sci. 2021, 11, 11230. [Google Scholar] [CrossRef]
- Wang, Q.; He, M.; Li, S.; Jiang, Z.; Wang, Y.; Qin, Q.; Jiang, B. Comparative study of model tests on automatically formed roadway and gob-side entry driving in deep coal mines. Int. J. Min. Sci. Technol. 2021, 31, 591–601. [Google Scholar] [CrossRef]
- Yang, R.; Xu, Y.; Chen, P.; Wang, J. Experimental study on dynamic mechanics and energy evolution of rubber concrete under cyclic impact loading and dynamic splitting tension. Constr. Build. Mater. 2020, 262, 120071. [Google Scholar] [CrossRef]
- He, M.; Zhang, Z.; Zheng, J.; Chen, F.; Li, N. A New Perspective on the Constant mi of the Hoek–Brown Failure Criterion and a New Model for Determining the Residual Strength of Rock. Rock Mech. Rock Eng. 2020, 53, 3953–3967. [Google Scholar] [CrossRef]
- Lv, N.; Wang, H.; Rong, K.; Chen, Z.; Zong, Q. The numerical simulation of large diameter split Hopkinson pressure bar and Hopkinson bundle bar of concrete based on mesoscopic model. Constr. Build. Mater. 2021, 315, 125728. [Google Scholar] [CrossRef]
- Yan, Z.; Dai, F.; Liu, Y.; Du, H.; Luo, J. Dynamic Strength and Cracking Behaviors of Single-Flawed Rock Subjected to Coupled Static–Dynamic Compression. Rock Mech. Rock Eng. 2020, 53, 4289–4298. [Google Scholar] [CrossRef]
- Gong, F.; Si, X.; Li, X.; Wang, S. Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar. Int. J. Rock Mech. Min. Sci. 2019, 113, 211–219. [Google Scholar] [CrossRef]
- Li, X.F.; Li, X.; Li, H.B.; Zhang, Q.B.; Zhao, J. Dynamic tensile behaviours of heterogeneous rocks: The grain scale fracturing characteristics on strength and fragmentation. Int. J. Impact Eng. 2018, 118, 98–118. [Google Scholar] [CrossRef]
- Yang, S.; Wang, J.; Zhang, Z.; Ning, J.; Sun, G. Experimental Investigation on Multiscale Fracturing in Thermally Treated Sandstone under SHPB Impact Loading. Shock. Vib. 2021, 2021, 3211674. [Google Scholar] [CrossRef]
- Xing, L.; Wang, S.; Xia, K.; Tong, T. Dynamic Tensile Response of a Microwave Damaged Granitic Rock. Exp. Mech. 2020, 61, 2. [Google Scholar]
- Liu, W.; Yang, K.; Zhen, W.; Chi, X.; Xu, R.; Lv, X. Energy Dissipation and Failure Characteristics of Layered Composite Rocks under Impact Load. Shock. Vib. 2021, 2021, 8775338. [Google Scholar] [CrossRef]
- Gong, F.; Jia, H.; Zhang, Z.; Hu, J.; Luo, S. Energy Dissipation and Particle Size Distribution of Granite under Different Incident Energies in SHPB Compression Tests. Shock Vib. 2020, 2020, 8899355. [Google Scholar] [CrossRef]
- Zheng, Q.; Hu, H.; Yuan, A.; Li, M.; Wang, H.; Wang, M.; Zong, Q.; Zhang, S. Impact Dynamic Properties and Energy Evolution of Damaged Sandstone Based on Cyclic Loading Threshold. Shock Vib. 2020, 2020, 6615602. [Google Scholar] [CrossRef]
- Zhou, Z.; Cai, X.; Li, X.; Cao, W.; Du, X. Dynamic Response and Energy Evolution of Sandstone Under Coupled Static–Dynamic Compression: Insights from Experimental Study into Deep Rock Engineering Applications. Rock Mech. Rock Eng. 2020, 53, 1305–1331. [Google Scholar] [CrossRef]
- Li, X.; Tao, Z.; Wang, J.; Zuo, J.; Ma, J.; Li, Q. Strain Rate Effect on Mechanical Properties of Cemented Backfill under Dynamic and Static Combined Loading. Shock Vib. 2021, 2021, 2196838. [Google Scholar] [CrossRef]
- Li, X.; Huang, S.; Yin, T.; Li, X.; Peng, K.; Fan, X. Experimental Investigation on the Energy Properties and Failure Process of Thermal Shock Treated Sandstone Subjected to Coupled Dynamic and Static Loads. Minerals 2022, 12, 25. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Lin, G.; Zhang, L.; Yu, H.; Di, K. Study on Dynamic Mechanical Properties and Failure Mechanism of Sandstones under Real-Time High Temperature. Geofluids 2021, 2021, 9628675. [Google Scholar] [CrossRef]
- Guo, L.; Yang, Y.; Zhang, D.; Li, L. Analysis on the Fragmentation Energy Consumption of Magnetite Quartzite under Impact Loads. Met. Mine 2014, 458, 1–5. (In Chinese) [Google Scholar]
- Liu, X. An Analysis of the Rock’s Dynamic Properties and Its Failure Characteristics. Master’s Thesis, University of Science and Technology Liaoning, Anshan, China, 2016. [Google Scholar]
- Pan, B.; Wang, X.; Xu, Z.; Guo, L.; Wang, X. Experimental and Numerical Study of Fracture Behavior of Rock-Like Material Specimens with Single Pre-Set Joint under Dynamic Loading. Materials 2021, 14, 2690. [Google Scholar] [CrossRef]
- Li, X. Study on the effect of joint characteristics on impact crushing effect of rock. Master’s Thesis, University of Science and Technology Liaoning, Anshan, China, 2020. [Google Scholar]
- Wang, J.; Zuo, T.; Li, X.; Tao, Z.; Ma, J. Study on the fractal characteristics of the pomegranate biotite schist under impact loading. Geofluids 2021, 2021, 1570160. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, C.; Zhang, J.; Ge, L. Breakage behavior of gravel rock particles under impact force. Comput. Part. Mech. 2021, 8, 1075–1087. [Google Scholar] [CrossRef]
- Zhang, Z.; Qian, Q.; Wang, H.; Huang, Y.; Wang, J.; Liu, H. Study on the dynamic mechanical properties of metamorphic limestone under impact loading. Lithosphere 2021, 2021, 8403502. [Google Scholar] [CrossRef]
- Qiu, H.; Zhu, Z.; Wang, F.; Wang, M.; Zhou, C.; Luo, C.; Wang, X.; Mao, H. Dynamic behavior of a running crack crossing mortar-rock interface under impacting load. Eng. Fract. Mech. 2020, 240, 107202. [Google Scholar] [CrossRef]
- Li, J.C.; Rong, L.F.; Li, H.B.; Hong, S.N. An SHPB Test Study on Stress Wave Energy Attenuation in Jointed Rock Masses. Rock Mech. Rock Eng. 2018, 52, 403–420. [Google Scholar] [CrossRef]
- Lundberg, B. A split Hopkinson bar study of energy absorption in dynamic rock fragmentation. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1976, 13, 187–197. [Google Scholar] [CrossRef]
- Wang, L.; Qin, Y.; Jia, H.; Chen, S. Study on Mechanical Properties and Energy Dissipation of Frozen Sandstone under Shock Loading. Shock Vib. 2020, 4, 1–12. [Google Scholar] [CrossRef]
- Wu, B.; Yao, W.; Xia, K. An experimental study of dynamic tensile failure of rocks subjected to hydrostatic confinement. Rock Mech. Rock Eng. 2016, 49, 3855–3864. [Google Scholar] [CrossRef]
- Bao, R.H.; Zhang, L.C.; Yao, Q.Y.; Lunn, J. Estimating the Peak Indentation Force of the Edge Chipping of Rocks Using Single Point-Attack Pick. Rock Mech. Rock Eng. 2011, 44, 339–347. [Google Scholar] [CrossRef]
Density (kg/m3) | P-Wave Velocity (m/s) | Elastic Modulus (GPa) |
---|---|---|
2723 | 4888 | 36.68 |
Specimen ID number | Incident Energy /J | Strain Rate /s−1 | Dynamic Strength /MPa | Energy Time Density in the Peak Point /J·cm−3·μs−l | Energy Time Density in Equilibrium Point /J·cm−3·μs−l | Specific Energy Absorption /J·cm−3 |
---|---|---|---|---|---|---|
0.6–0.12 | 186.34 | 33.44 | 85.91 | 0.0026 | 0.0008 | 0.50 |
0.6–0.15 | 236.27 | 59.54 | 109.34 | 0.0050 | 0.0009 | 0.71 |
0.6–0.18 | 282.42 | 84.38 | 103.18 | 0.0079 | 0.0019 | 0.95 |
0.6–0.24 | 332.76 | 132.01 | 122.72 | 0.0125 | 0.0066 | 1.57 |
0.8–0.13 | 242.57 | 56.22 | 106.68 | 0.0043 | 0.0017 | 0.74 |
0.8–0.15 | 235.79 | 51.25 | 85.66 | 0.0056 | 0.0026 | 0.30 |
0.8–0.24 | 281.73 | 104.26 | 121.76 | 0.0088 | 0.0024 | 0.88 |
1.0–0.13 | 227.76 | 43.80 | 113.26 | 0.0024 | 0.0008 | 0.42 |
1.0–0.23 | 317.43 | 89.77 | 139.48 | 0.0056 | 0.0034 | 1.23 |
1.0–0.25 | 343.08 | 101.36 | 131.26 | 0.0067 | 0.0047 | 1.51 |
1.2–0.14 | 229.02 | 30.55 | 114.39 | 0.0018 | 0.0014 | 0.40 |
1.2–0.15 | 229.89 | 49.60 | 87.49 | 0.0034 | 0.0010 | 0.30 |
1.2–0.24 | 341.45 | 86.04 | 149.26 | 0.0047 | 0.0035 | 1.43 |
1.4–0.14 | 221.63 | 38.00 | 102.78 | 0.0023 | 0.0010 | 0.25 |
1.4–0.15 | 213.66 | 35.10 | 97.69 | 0.0021 | 0.0018 | 0.36 |
1.4–0.22 | 325.35 | 78.59 | 143.27 | 0.0038 | 0.0031 | 1.17 |
1.4–0.24 | 328.18 | 93.91 | 127.41 | 0.0046 | 0.0034 | 1.09 |
Specimen Number | >26.5 mm | 26.5 mm | 19 mm | 16 mm | 13.2 mm | 9.5 mm | 4.75 mm | <2.36 mm | D | Ku | Energy Time Density |
---|---|---|---|---|---|---|---|---|---|---|---|
0.6–0.12 | 74.37% | 25.63% | - | - | - | - | - | - | - | 0.016 | 0.0006 |
0.6–0.15 | 16.65% | 54.81% | 5.70% | 7.15% | 5.57% | 2.28% | 4.68% | 3.16% | 1.72 | 0.066 | 0.0014 |
0.6–0.18 | - | 42.72% | 33.80% | 12.03% | 3.16% | 2.03% | 4.62% | 1.65% | 1.39 | 0.062 | 0.0028 |
0.6–0.24 | 19.24% | 30.57% | 4.05% | 13.99% | 16.27% | 8.35% | 6.20% | 1.33% | 1.37 | 0.074 | 0.0065 |
0.8–0.12 | 63.86% | 23.27% | 2.41% | 1.80% | 0.57% | 0.24% | 2.51% | 5.35% | 2.13 | 0.065 | 0.0006 |
0.8–0.15 | 20.15% | 46.55% | 14.76% | 2.65% | 3.22% | 3.93% | 1.94% | 6.81% | 1.98 | 0.086 | 0.0011 |
0.8–0.17 | 29.90% | 10.50% | 7.00% | 16.65% | 14.24% | 14.62% | 3.74% | 3.36% | 1.64 | 0.089 | 0.0022 |
0.8–0.24 | - | 14.71% | 12.87% | 13.62% | 14.33% | 20.86% | 12.20% | 11.40% | 2.12 | 0.179 | 0.0034 |
1.0–0.09 | 90.57% | - | 3.69% | 3.61% | 0.74% | 1.12% | 0.27% | - | 0.25 | 0.024 | 0.0004 |
1.0–0.13 | 48.76% | 32.66% | 4.00% | 4.07% | 5.12% | 1.59% | 1.36% | 2.44% | 1.65 | 0.051 | 0.0006 |
1.0–0.18 | - | 24.40% | 28.47% | 11.48% | 7.64% | 8.53% | 9.81% | 9.66% | 2.07 | 0.145 | 0.0012 |
1.0–0.23 | - | 37.63% | 14.66% | 4.58% | 16.18% | 10.90% | 7.21% | 8.84% | 2.02 | 0.135 | 0.0021 |
1.2–0.12 | 78.21% | 12.13% | 3.82% | - | - | - | 3.98% | 1.86% | 1.90 | 0.047 | 0.0001 |
1.2–0.15 | 76.94% | 9.85% | 5.94% | - | - | 0.54% | 1.01% | 5.72% | 2.22 | 0.065 | 0.0007 |
1.2–0.18 | 61.43% | 29.88% | 2.91% | - | - | 2.65% | 0.41% | 2.72% | 1.83 | 0.047 | 0.0016 |
1.2–0.25 | - | 26.91% | 28.49% | 6.89% | 13.30% | 11.56% | 9.95% | 2.91% | 1.64 | 0.107 | 0.0020 |
1.4–0.12 | 89.72% | 4.70% | - | 0.94% | 1.13% | 1.42% | 0.46% | 1.64% | 1.85 | 0.037 | 0.0002 |
1.4–0.14 | 66.45% | 28.10% | - | - | - | 2.98% | 1.34% | 1.13% | 1.60 | 0.040 | 0.0004 |
1.4–0.18 | 49.97% | 43.59% | - | - | - | - | 4.11% | 2.33% | 1.89 | 0.054 | 0.0015 |
1.4–0.24 | 13.50% | 33.41% | 11.06% | 9.98% | 8.21% | 6.66% | 6.82% | 10.36% | 2.13 | 0.136 | 0.0021 |
The R2 of Curve | Aspect Ratio | ||||
---|---|---|---|---|---|
0.6 | 0.8 | 1.0 | 1.2 | 1.4 | |
Strain rate—Ku | 0.58 | 0.75 | 0.79 | 0.37 | 0.60 |
Energy time density—Ku | 0.46 | 0.83 | 0.72 | 0.41 | 0.74 |
Strain rate—D | 0.73 | 0.06 | 0.54 | 0.43 | 0.58 |
Energy time density—D | 0.59 | 0.01 | 0.52 | 0.44 | 0.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Guo, L.; Xu, Z.; Wang, J.; Deng, D.; Xu, J.; Hu, Z. A New Index of Energy Dissipation Considering Time Factor under the Impact Loads. Materials 2022, 15, 1443. https://doi.org/10.3390/ma15041443
Wang X, Guo L, Xu Z, Wang J, Deng D, Xu J, Hu Z. A New Index of Energy Dissipation Considering Time Factor under the Impact Loads. Materials. 2022; 15(4):1443. https://doi.org/10.3390/ma15041443
Chicago/Turabian StyleWang, Xuesong, Lianjun Guo, Zhenyang Xu, Junxiang Wang, Ding Deng, Jinglong Xu, and Zhihang Hu. 2022. "A New Index of Energy Dissipation Considering Time Factor under the Impact Loads" Materials 15, no. 4: 1443. https://doi.org/10.3390/ma15041443
APA StyleWang, X., Guo, L., Xu, Z., Wang, J., Deng, D., Xu, J., & Hu, Z. (2022). A New Index of Energy Dissipation Considering Time Factor under the Impact Loads. Materials, 15(4), 1443. https://doi.org/10.3390/ma15041443