Microstructure Evolution of 7075 Aluminum Alloy by Rotary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Process
2.2. Microstructure Characterization
2.3. DEFORM-3D Simulation
2.4. Micro Hardness Test Method
3. Results
3.1. CBE and RBE Simulation Results
3.1.1. Strain Field Analysis
3.1.2. Analysis of Metal Flow Trajectory
3.2. The Structure of 7075 Alloy after Solid Solution
3.3. Texture Changes during CBE and RBE
3.4. Hardness Test
4. Conclusions
- Compared with conventional back extrusion, rotary back extrusion can significantly increase the equivalent strain value and deformation range of the cup-shaped piece. The rotating back-extrusion deformation can not only drive the bottom metal of the cup-shaped piece to rotate and increase the accumulated strain of the piece, but also causes the piece to produce shear strain, which increases the overall strain of the cup-shaped piece.
- Rotating back extrusion deformation can significantly refine the grains, increase the proportion of dynamic recrystallization, promote metal flow, and eliminate the “deformation dead zone” in conventional back extrusion deformation, which the grain size is reduced by 92.0% compared with the CBE, but more deformation heat will also be generated in the rotating back extrusion deformation, which will cause the grains in the forming zone to recover and grow up statically.
- Discontinuous dynamic recrystallization is the main dynamic recrystallization mechanism of rotary back-extrusion deformation. A large number of continuous dynamic recrystallization mechanisms occur in the shear zone of the cup-shaped piece, and less in other areas. The micro hardness values of different regions of the rotating back-extrusion cup-shaped parts are all higher than those of the conventional back-extrusion samples, which is mainly caused by the strengthening of fine grains.
- The metal flow in the wall area of the direct back-extrusion deviates from the original wall by about 30°, while the rotating back-extrusion does not have such a phenomenon due to the increased shear stress.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Starke, E.A., Jr.; Staley, J.T. Application of modern aluminum alloys to aircraft. Prog. Aerosp. Sci. 1996, 32, 131–172. [Google Scholar] [CrossRef]
- Guo, X.; Deng, Y.; Zhang, J.; Zhang, X. A crystallographic orientation based model for describing the precipitation strengthening of stress-aged Al–Cu alloy. Mater. Sci. Eng. A 2015, 644, 358–364. [Google Scholar] [CrossRef]
- Jirón-Lazos, U.; Corvo, F.; De La Rosa, S.C.; García-Ochoa, E.M.; Bastidas, D.M.; Bastidas, J.M. Localized corrosion of aluminum alloy 6061 in the presence of Aspergillus niger. Int. Biodeterior. Biodegrad. 2018, 133, 17–25. [Google Scholar] [CrossRef]
- Turkmen, H.S.; Loge, R.E.; Dawson, P.R.; Miller, M.P. On the mechanical behaviour of AA 7075-T6 during cyclic loading. Int. J. Fatigue 2003, 25, 267–281. [Google Scholar] [CrossRef]
- Williams, J.C.; Starke, E.A., Jr. Progress in structural materials for aerospace systems. Acta Mater. 2003, 51, 5775–5799. [Google Scholar] [CrossRef]
- Jayaganthan, R.; Brokmeier, H.-G.; Schwebke, B.; Panigrahi, S. Microstructure and texture evolution in cryorolled Al 7075 alloy. J. Alloy. Compd. 2010, 496, 183–188. [Google Scholar] [CrossRef]
- Mahathaninwong, N.; Plookphol, T.; Wannasin, J.; Wisutmethangoon, S. T6 heat treatment of rheocasting 7075 Al alloy. Mater. Sci. Eng. A 2012, 532, 91–99. [Google Scholar] [CrossRef]
- Das, P.; Jayaganthan, R.; Singh, I.V. Tensile and impact-toughness behaviour of cryorolled Al 7075 alloy. Mater. Des. 2011, 32, 1298–1305. [Google Scholar] [CrossRef]
- Gurgen, S.; Sackesen, I.; Kushan, M.C. Fatigue and corrosion behavior of in-service AA7075 aircraft component after thermo-mechanical and retrogression and re-aging treatments. Proc. Inst. Mech. Eng. 2019, 233, 1764–1772. [Google Scholar] [CrossRef]
- Lin, Y.C.; Zhang, J.L.; Guan, L.; Liang, Y.J. Effects of pre-treatments on aging precipitates and corrosion resistance of a creep-aged Al–Zn–Mg–Cu alloy. Mater. Des. 2015, 83, 866–875. [Google Scholar] [CrossRef]
- Binesh, B.; Aghaie-Khafri, M. RUE-based semi-solid processing: Microstructure evolution and effective parameters. Mater. Des. 2016, 95, 268–286. [Google Scholar] [CrossRef]
- Rokni, M.; Zarei-Hanzaki, A.; Abedi, H.R. Microstructure evolution and mechanical properties of back extruded 7075 aluminum alloy at elevated temperatures. Mater. Sci. Eng. A 2012, 532, 593–600. [Google Scholar] [CrossRef]
- Edalati, K.; Yamamoto, A.; Horita, Z.; Ishihara, T. High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain. Scr. Mater. 2011, 64, 880–883. [Google Scholar] [CrossRef]
- Greenwood, H.; Thompson, F.C. Wires drawn through Rotating Dies. Nature 1931, 128, 152. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, Z.; Wang, Q.; Hao, H.; Cui, J.; Li, L. Rotary extrusion as a novel severe plastic deformation method for cylindrical tubes. Mater. Lett. 2018, 215, 195–199. [Google Scholar] [CrossRef]
- Dong, B.; Che, X.; Wang, Q.; Meng, M.; Gao, Z.; Ma, J.; Yang, F.; Zhang, Z. Refining the microstructure and modifying the texture of the AZ80 alloy cylindrical tube by the rotating backward extrusion with different rotating revolutions—ScienceDirect. J. Alloy. Compd. 2020, 836, 155442. [Google Scholar] [CrossRef]
- Che, X.; Dong, B.; Wang, Q.; Liu, K.; Meng, M.; Gao, Z.; Ma, J.; Yang, F.; Zhang, Z. The effect of processing parameters on the microstructure and texture evolution of a cup-shaped AZ80 Mg alloy sample manufactured by the rotating backward extrusion. J. Alloy. Compd. 2020, 854, 156264. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Q.; Yang, Y.; Yang, F.; Dong, B.; Che, X.; Cao, H.; Zhang, T.; Zhang, Z. Anisotropic Low Cycle Behavior of the Extruded 7075 Al Alloy. Materials 2021, 14, 4506. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, Z.; Zhang, Z.; Li, X.; Wang, Q.; Zhang, Y. Processing maps for hot deformation of the extruded 7075 aluminum alloy bar: Anisotropy of hot workability. Mater. Sci. Eng. A 2014, 615, 183–190. [Google Scholar] [CrossRef]
- Gao, P.; Yang, H.; Fan, X. Quantitative analysis of the material flow in transitional region during isothermal local loading forming of Ti-alloy rib-web component. Int. J. Adv. Manuf. Technol. 2014, 75, 1339–1347. [Google Scholar] [CrossRef]
- Gao, P.; Yang, H.; Fan, X.; Lei, P. Quick prediction of the folding defect in transitional region during isothermal local loading forming of titanium alloy large-scale rib-web component based on folding index. J. Mater. Process. Technol. 2015, 219, 101–111. [Google Scholar] [CrossRef]
- Hu, X.-H.; Wang, Z.-H.; Bao, G.-J.; Hong, X.-X.; Xue, J.-Y.; Yang, Q.-H. Influences of electric-hydraulic chattering on backward extrusion process of 6061 aluminum alloy. Trans. Nonferrous Met. Soc. China 2015, 25, 3056–3063. [Google Scholar] [CrossRef]
- Koike, J.; Kobayashi, T.; Mukai, T.; Watanabe, H.; Suzuki, M.; Maruyama, K.; Higashi, K. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 2003, 51, 2055–2065. [Google Scholar] [CrossRef]
- Püschl, W.; Schoeck, G.; Kirchner, H.O.K. The line tension of dislocations in anisotropic media. Philos. Mag. A 1987, 56, 553–563. [Google Scholar] [CrossRef]
- Couret, A.; Caillard, D. An in situ study of prismatic glide in magnesium—I. The rate controlling mechanism. Acta Met. 1985, 33, 1447–1454. [Google Scholar] [CrossRef]
- Jiang, M.; Yan, H.; Chen, R. Twinning, recrystallization and texture development during multi-directional impact forging in an AZ61 Mg alloy. J. Alloy. Compd. 2015, 650, 399–409. [Google Scholar] [CrossRef]
- Jiang, M.; Xu, C.; Yan, H.; Fan, G.; Nakata, T.; Lao, C.; Chen, R.; Kamado, S.; Han, E.; Lu, B. Unveiling the formation of basal texture variations based on twinning and dynamic recrystallization in AZ31 magnesium alloy during extrusion. Acta Mater. 2018, 157, 53–71. [Google Scholar] [CrossRef]
- Xu, S.W.; Oh-Ishi, K.; Kamado, S.; Homma, T. Twins, recrystallization and texture evolution of a Mg–5.99Zn–1.76Ca–0.35Mn (wt.%) alloy during indirect extrusion process. Scripta Mater. 2011, 65, 875–878. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, H.; Yang, Y.; Zhang, X.; Ma, J.; Zhang, T.; Zhang, Z. Microstructure Evolution of 7075 Aluminum Alloy by Rotary. Materials 2022, 15, 1445. https://doi.org/10.3390/ma15041445
Cao H, Yang Y, Zhang X, Ma J, Zhang T, Zhang Z. Microstructure Evolution of 7075 Aluminum Alloy by Rotary. Materials. 2022; 15(4):1445. https://doi.org/10.3390/ma15041445
Chicago/Turabian StyleCao, Hui, Yongbiao Yang, Xing Zhang, Jin Ma, Tingyan Zhang, and Zhimin Zhang. 2022. "Microstructure Evolution of 7075 Aluminum Alloy by Rotary" Materials 15, no. 4: 1445. https://doi.org/10.3390/ma15041445
APA StyleCao, H., Yang, Y., Zhang, X., Ma, J., Zhang, T., & Zhang, Z. (2022). Microstructure Evolution of 7075 Aluminum Alloy by Rotary. Materials, 15(4), 1445. https://doi.org/10.3390/ma15041445