Low Cost Embedded Copper Mesh Based on Cracked Template for Highly Durability Transparent EMI Shielding Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cracked Template Preparation
2.3. Magnetron Sputtering of Cu Layer and Obtained Cu Seed Mesh
2.4. Electroplating Copper on Cu Seed Mesh
2.5. Embedding Process Cu Meshes in Photocurable Resin Layer
2.6. Morphology Study Cu Meshes and Embedded Cu Meshes
2.7. Optoelectrical Properties Embedded Cu Meshes
2.8. Mechanical Properties of Cu Meshes and Embedded Cu Meshes
2.9. Shielding Properties of Embedded Cu Meshes
- measure the spectrum S21 (or S12) of the cell without a sample (groove thickness— 0 mm), S21OS (dB),
- measure the spectrum S21 (or S12) of the sample cell, S21S (dB),
- calculate the spectrum SE (dB) by Formula (1),
3. Results and Discussion
3.1. Morphology Study of Cu Meshes
3.2. Morphology Study of Embedded Cu Meshes
3.3. Optoelectrical Properties of Embedded Cu Meshes
3.4. Mechanical Properties of Cu Meshes and Embedded Cu Meshes
3.5. Shielding Properties of Embedded Cu Meshes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, S.; Shao, J.; Ma, K.; Chen, D.; Wang, X.; Zhang, L.; Meng, Q.; Ma, J. Flexible, mechanically resilient carbon nanotube composite films for high-efficiency electromagnetic interference shielding. Carbon 2018, 136, 387–394. [Google Scholar] [CrossRef]
- Park, J.G.; Louis, J.; Cheng, Q.; Bao, J.; Smithyman, J.; Liang, R.; Wang, B.; Zhang, C.; Brooks, J.S.; Kramer, L.; et al. Electromagnetic interference shielding properties of carbon nanotube buckypaper composites. Nanotechnology 2009, 20, 415702. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Shahzad, F.; Soon, S.Y.; Hong, M.; Kim, Y.-H.; Koo, C.M. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon 2015, 94, 494–500. [Google Scholar] [CrossRef]
- Han, M.; Shuck, C.E.; Rakhmanov, R.; Parchment, D.; Anasori, B.; Koo, C.M.; Friedman, G.; Gogotsi, Y. Beyond Ti3C2Tx: MXenes for Electromagnetic Interference Shielding. ACS Nano 2020, 14, 5008–5016. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Li, Y.; Zhou, E.; Liu, Y.; Gao, W.; Guo, Y.; Ying, J.; Chen, Z.; Chen, G.; Gao, C. Graphene aerogel films with expansion enhancement effect of high-performance electromagnetic interference shielding. Carbon 2018, 135, 44–51. [Google Scholar] [CrossRef]
- Sambyal, P.; Iqbal, A.; Hong, J.; Kim, H.; Kim, M.-K.; Hong, S.M.; Han, M.; Gogotsi, Y.; Koo, C.M. Ultralight and Mechanically Robust Ti3C2Tx Hybrid Aerogel Reinforced by Carbon Nanotubes for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2019, 11, 38046–38054. [Google Scholar] [CrossRef]
- Singh, S.; Tripathi, P.; Bhatnagar, A.; Patel, C.R.P.; Singh, A.P.; Dhawan, S.K.; Gupta, B.K.; Srivastava, O.N. A highly porous, light weight 3D sponge like graphene aerogel for electromagnetic interference shielding applications. RSC Adv. 2015, 5, 107083. [Google Scholar] [CrossRef] [Green Version]
- Bian, R.; He, G.; Zhi, W.; Xiang, S.; Wang, T.; Ca, D. Ultralight MXene-based aerogels with high electromagnetic interference shielding performance. J. Mater. Chem. C 2019, 7, 474–478. [Google Scholar] [CrossRef]
- Wang, T.; Kong, W.-W.; Yu, W.-C.; Gao, J.-F.; Dai, K.; Yan, D.-X.; Li, Z.-M. A Healable and Mechanically Enhanced Composite with Segregated Conductive Network Structure for High-Efficient Electromagnetic Interference Shielding. Nano-Micro Lett. 2021, 13, 162. [Google Scholar] [CrossRef]
- Mei, H.; Lu, M.; Zhou, S.; Cheng, L. Enhanced impact resistance and electromagnetic interference shielding of carbon nanotubes films composites. J. Appl. Polym. Sci. 2021, 138, 50033. [Google Scholar] [CrossRef]
- Choi, H.K.; Lee, A.; Park, M.; Lee, D.S.; Bae, S.; Lee, S.-K.; Lee, S.H.; Lee, T.; Kim, T.-W. Hierarchical Porous Film with Layer-by-Layer Assembly of 2D Copper Nanosheets for Ultimate Electromagnetic Interference Shielding. ACS Nano 2021, 15, 829–839. [Google Scholar] [CrossRef]
- Hu, M.; Gao, J.; Dong, Y.; Li, K.; Shan, G.; Yang, S.; Li, R.K.-Y. Flexible Transparent PES/Silver Nanowires/PET Sandwich-Structured Film for High-Efficiency Electromagnetic Interference Shielding. Langmuir 2012, 28, 7101–7106. [Google Scholar] [CrossRef]
- Jia, L.C.; Yan, D.X.; Liu, X.F.; Ma, R.J.; Wu, H.Y.; Li, Z.M. Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding, Film. ACS Appl. Mater. Interfaces 2018, 10, 11941–11949. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, Y.-Y.; Song, Y.-N.; Jia, L.-C.; Zhong, G.-J.; Xu, L.; Yan, D.-X.; Lei, J.; Li, Z.-M. Ultrathin, flexible and sandwich-structured PHBV/silver nanowire films for high-efficiency electromagnetic interference shielding. J. Mater. Chem. C 2021, 9, 3307–3315. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, A.; Yan, Z.; Qin, F.; Xu, J.; Ji, Y.; Kan, C. PET/Ag NW/PMMA transparent electromagnetic interference shielding films with high stability and flexibility. Nanoscale 2021, 13, 8067. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Yan, Z.; Wang, S.; Wang, Y.; Mei, L.; Qin, F.; Jiang, R. Transparent, Flexible, and Stable Polyethersulfone/Copper-Nanowires/Polyethylene Terephthalate Sandwich-Structured Films for High-Performance Electromagnetic Interference Shielding. Adv. Eng. Mater. 2021, 23, 2100283. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kim, Y.; Kim, J.-W. Transparent and flexible film for shielding electromagnetic interference. Mater. Design. 2016, 89, 703–707. [Google Scholar] [CrossRef]
- Wang, H.; Lu, Z.; Tan, J. Generation of uniform diffraction pattern and high EMI shielding performance by metallic mesh composed of ring and rotated sub-ring arrays. Opt. Express 2016, 24, 22991. [Google Scholar] [CrossRef]
- Liang, Z.; Zhao, Z.; Pu, M.; Luo, J.; Xie, X.; Wang, Y.; Guo, Y.; Ma, X.; Luo, X. Metallic nanomesh for high-performance transparent electromagnetic shielding. Opt. Mater. Express 2020, 10, 796. [Google Scholar] [CrossRef]
- Lee, H.-C.; Kim, J.-Y.; Noh, C.-H.; Song, K.Y.; Cho, S.-H. Selective metal pattern formation and its EMI shielding efficiency. Appl. Surf. Sci. 2006, 252, 2665–2672. [Google Scholar] [CrossRef]
- Shen, S.; Chen, S.Y.; Zhang, D.Y.; Liu, Y.H. High-performance composite Ag-Ni mesh based flexible transparent conductive film as multifunctional devices. Opt. Express 2018, 26, 27545–27554. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Lin, J.; Liu, Y.; Fu, H.; Ma, Y.; Jin, P.; Tan, J. Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding. Sci. Rep. 2016, 6, 25601. [Google Scholar] [CrossRef] [PubMed]
- Voronin, A.S.; Fadeev, Y.V.; Govorun, I.V.; Podshivalov, I.V.; Simunin, M.M.; Tambasov, I.A.; Karpova, D.V.; Smolyarova, T.E.; Lukyanenko, A.V.; Karacharov, A.A.; et al. Cu–Ag and Ni–Ag meshes based on cracked template as efficient transparent electromagnetic shielding coating with excellent mechanical performance. J. Mater. Sci. 2021, 56, 14741–14762. [Google Scholar] [CrossRef]
- Kim, M.-H.; Joh, H.; Hong, S.-H.; Oh, S.J. Coupled Ag nanocrystal-based transparent mesh electrodes for transparent and flexible electro-magnetic interference shielding films. Curr. Appl. Phys. 2019, 19, 8–13. [Google Scholar] [CrossRef]
- Kumar, A.; Kulkarni, G.U. Time Evolution and Spatial Hierarchy of Crack Patterns. Langmuir 2021, 37, 13141–13147. [Google Scholar] [CrossRef]
- Lee, Y.; Jin, W.-Y.; Cho, K.Y.; Kang, J.-W.; Kim, J. Thermal pressing of a metal-grid transparent electrode into a plastic substrate for flexible electronic devices. J. Mater. Chem. C 2016, 4, 7577–7583. [Google Scholar] [CrossRef]
- Zhang, C.; Khan, A.; Cai, J.; Liang, C.; Liu, Y.; Deng, J.; Huang, S.; Li, G.; Li, W.-D. Stretchable Transparent Electrodes with Solution-Processed Regular Metal Mesh for an Electroluminescent Light-Emitting Film. ACS Appl. Mater. Interfaces 2018, 10, 21009–21017. [Google Scholar] [CrossRef]
- Jin, W.-Y.; Ginting, R.T.; Ko, K.-J.; Kang, J.-W. Ultra-Smooth, Fully Solution-Processed Large-Area Transparent Conducting Electrodes for Organic Devices. Sci. Rep. 2016, 6, 36475. [Google Scholar] [CrossRef] [Green Version]
- Jung, P.-H.; Kim, Y.D.; Choi, H.-J.; Sung, Y.H.; Lee, H. A transparent embedded Cu/Au-nanomesh electrode on flexible polymer film substrates. RSC Adv. 2016, 6, 92970. [Google Scholar] [CrossRef]
- Song, M.; Kim, H.-J.; Kim, C.S.; Jeong, J.-H.; Cho, C.; Lee, J.-Y.; Jin, S.-H.; Choi, D.-G.; Kim, D.-H. ITO-free highly bendable and efficient organic solar cells with Ag nanomesh/ZnO hybrid electrodes. J. Mater. Chem. A 2015, 3, 65. [Google Scholar] [CrossRef]
- Lee, H.B.; Jin, W.-Y.; Ovhal, M.M.; Kumar, N.; Kang, J.-W. Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: A review. J. Mater. Chem. C 2019, 7, 1087–1110. [Google Scholar] [CrossRef]
- Choi, H.-J.; Park, B.-J.; Eom, J.-H.; Yoon, S.-G. Simultaneous realization of electromagnetic interference shielding, hydrophobic qualities, and strong antibacterial activity for transparent electronic devices. Curr. Appl. Phys. 2016, 16, 1642–1648. [Google Scholar] [CrossRef]
- Maniyara, R.A.; Mkhitaryan, V.K.; Chen, T.L.; Ghosh, D.S.; Pruneri, V. An antireflection transparent conductor with ultralow optical loss (<2%) and electrical resistance (<6 Ω sq–1). Nat. Commun. 2016, 7, 13771. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.J.; Kim, Y.-H.; Kim, J.K.; Baik, H.; Park, J.H.; Lee, J.; Nam, J.; Park, J.H.; Lee, T.-W.; Yi, G.-R.; et al. A roll-to-roll welding process for planarized silver nanowire electrodes. Nanoscale 2014, 6, 11828–11834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Xu, J.; Qin, F.; Yan, Z.; Guo, A.; Kan, C. Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires. Nanoscale 2020, 12, 14589–14597. [Google Scholar] [CrossRef]
- Qin, F.; Yan, Z.; Fan, J.; Cai, J.; Zhu, X.; Zhang, X. Highly Uniform and Stable Transparent Electromagnetic Interference Shielding Film Based on Silver Nanowire–PEDOT:PSS Composite for High Power Microwave Shielding. Macromol. Mater. Eng. 2021, 306, 2000607. [Google Scholar] [CrossRef]
- Guo, H.; Lin, N.; Chen, Y.; Wang, Z.; Xie, Q.; Zheng, T.; Gao, N.; Li, S.; Kang, J.; Cai, D.; et al. Copper Nanowires as Fully Transparent Conductive Electrodes. Sci. Rep. 2013, 3, 2323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, L.; Li, J.; Zhu, C.; Yang, Y.; Zhao, S.; Song, W. Realization of a flexible and mechanically robust Ag mesh transparent electrode and its application in a PDLC device. RSC Adv. 2016, 6, 13531–13536. [Google Scholar] [CrossRef]
- Kim, W.-K.; Lee, S.; Lee, D.H.; Park, I.H.; Bae, J.S.; Lee, T.W.; Kim, J.-Y.; Park, J.H.; Cho, Y.C.; Cho, C.R.; et al. Cu Mesh for Flexible Transparent Conductive Electrodes. Sci. Rep. 2015, 5, 10715. [Google Scholar] [CrossRef] [Green Version]
- Rao, K.D.M.; Kulkarni, G.U. A highly crystalline single Au wire network as a high temperature transparent heater. Nanoscale 2014, 6, 5645–5651. [Google Scholar] [CrossRef] [Green Version]
- Jia, G.; Plentz, J.; Dellith, A.; Schmidt, C.; Dellith, J.; Schmidl, G.; Andrä, G. Biomimic Vein-Like Transparent Conducting Electrodes with Low Sheet Resistance and Metal Consumption. Nano-Micro Lett. 2020, 12, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Z.; Ko, P.; Youn, H.; Kim, A.; Woo, K. Fabrication of Highly Flat, Flexible Mesh Electrode for Use in Photovoltaics. Int. J. Precis. Eng. Manuf.-Green Tech. 2020, 8, 1711–1722. [Google Scholar] [CrossRef]
- Dong, G.; Liu, S.; Pan, M.; Zhou, G.; Liu, J.-M.; Kempa, K.; Gao, J. Bioinspired High-Adhesion Metallic Networks as Flexible Transparent Conductors. Adv. Mater. Technol. 2019, 4, 1900056. [Google Scholar] [CrossRef]
- Nam, S.; Song, M.; Kim, D.-H.; Cho, B.; Lee, H.M.; Kwon, J.-D.; Park, S.-G.; Nam, K.-S.; Jeong, Y.; Kwon, S.-H.; et al. Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode. Sci. Rep. 2014, 4, 4788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Liao, S.; Ren, J.; Khalid, B.; Peng, H.; Wu, H. A transparent, conducting tape for flexible electronics. Nano Res. 2016, 9, 917–924. [Google Scholar] [CrossRef]
- Tan, D.; Jiang, C.; Li, Q.; Bi, S.; Wang, X.; Song, J. Development and current situation of flexible and transparent EM shielding materials. J. Mater. Sci. Mater. Electron. 2021, 32, 25603–25630. [Google Scholar] [CrossRef]
- Hong, S.K.; Kim, K.Y.; Kim, T.Y.; Kim, J.H.; Park, S.W.; Kim, J.H.; Cho, B.J. Electromagnetic interference shielding effectiveness of monolayer graphene. Nanotechnology 2012, 23, 455704. [Google Scholar] [CrossRef]
- Park, J.-B.; Rho, H.; Cha, A.-N.; Bae, H.; Lee, S.H.; Ryu, S.-W.; Jeong, T.; Ha, J.-S. Transparent carbon nanotube web structures with Ni-Pd nanoparticles for electromagnetic interference (EMI) shielding of advanced display devices. Appl. Surf. Sci. 2020, 516, 145745. [Google Scholar] [CrossRef]
- Hosseini, E.; Arjmand, M.; Sundararaj, U.; Karan, K. Filler-Free Conducting Polymers as a New Class of Transparent Electromagnetic Interference Shields. Appl. Mater. Interfaces 2020, 12, 28596–28606. [Google Scholar] [CrossRef]
- Jung, J.; Lee, H.; Ha, I.; Cho, H.; Kim, K.K.; Kwon, J.; Won, P.; Hong, S.; Ko, S.H. Highly Stretchable and Transparent Electromagnetic Interference Shielding Film Based on Silver Nanowire Percolation Network for Wearable Electronics Applications. Appl. Mater. Interfaces 2017, 9, 44609–44616. [Google Scholar] [CrossRef]
- Voronin, A.S.; Fadeev, Y.V.; Govorun, I.V.; Voloshin, A.S.; Tambasov, I.A.; Simunin, M.M.; Khartov, S.V. A Transparent Radio Frequency Shielding Coating Obtained Using a Self-Organized Template. Tech. Phys. Lett. 2021, 47, 31–34. [Google Scholar] [CrossRef]
- Kim, S.J.; Yoon, H.G.; Kim, S.W. Extremely Robust and Reliable Transparent Silver Nanowire-Mesh Electrode with Multifunctional Optoelectronic Performance through Selective Laser Nanowelding for Flexible Smart Devices. Adv. Eng. Mater. 2021, 23, 2001310. [Google Scholar] [CrossRef]
- Choi, H.-S.; Suh, S.-J.; Kim, S.-W.; Kim, H.-J.; Park, J.-W. Transparent Electromagnetic Shielding Film Utilizing Imprinting-Based Micro Patterning Technology. Polymers 2021, 13, 738. [Google Scholar] [CrossRef] [PubMed]
- Osipkov, A.; Makeev, M.; Konopleva, E.; Kudrina, N.; Gorobinskiy, L.; Mikhalev, P.; Ryzhenko, D.; Yurkov, G. Optically Transparent and Highly Conductive Electrodes for Acousto-Optical Devices. Materials 2021, 14, 7178. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, H.; Li, Q.; Mou, N.; Chen, L.; Zhang, L. Double-layer metal mesh etched by femtosecond laser for high-performance electromagnetic interference shielding window. RSC Adv. 2019, 9, 22282. [Google Scholar] [CrossRef] [Green Version]
Type Coating | Average h, nm | Average Error h, nm | Average b, nm | Average Error b, nm | FF, % |
---|---|---|---|---|---|
LCM 0 | 168.40 | 9.34 | 6918.72 | 1038.34 | 7.62 |
LCM 30 | 443.14 | 19.75 | 7050.13 | 1765.39 | 7.85 |
LCM 180 | 3722.82 | 66.35 | 11,573.96 | 1150.11 | 13.5 |
SCM 0 | 36.20 | 6.13 | 4251.26 | 396.96 | 11.8 |
SCM 30 | 723.03 | 50.15 | 7866.75 | 1088.62 | 19.5 |
SCM 180 | 4792.41 | 99.68 | 12,427.67 | 1793.26 | 29.9 |
Type of Coating | Rs, Ω/sq | T (550 nm), % | σdc/σopt | Reference |
---|---|---|---|---|
AZO/Ag/AZO | 7 | 90 | 491.5 | [32] |
AZO/Ag/TiO2 | 5.75 | 91.6 | 730 | [33] |
Ag nanowires | 5 | 92 | 884.9 | [34] |
PDDA/Ag nanowires composite | 22 | 95.5 | 443 | [35] |
PEDOT:PSS/Ag nanowires | 3 | 81.1 | 1131.1 | [36] |
Cu nanowires | 51.5 | 93.1 | 98.2 | [37] |
Ag mesh (PL template) | 8.2 | 80.2 | 197 | [38] |
AZO/Cu mesh (PL template) | 6.197 | 90.657 | 605.3 | [39] |
Au mesh (cracked template) | 3.2 | 92 | 1386.1 | [40] |
AgNP mesh (Emulsion template) | 8.2 | 88 | 347.7 | [24] |
Cu mesh (Biomimic Vein-Like template) | 0.1 | 80 | 15,708 | [41] |
e-LCM 30 | 2.43 | 91.2 | 1611.1 | |
e-LCM 180 | 0.21 | 84.3 | 10,189.2 | This work |
e-SCM 30 | 0.53 | 73.8 | 2179.2 | |
e-SCM 180 | 0.049 | 63.2 | 14,842.5 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voronin, A.S.; Fadeev, Y.V.; Makeev, M.O.; Mikhalev, P.A.; Osipkov, A.S.; Provatorov, A.S.; Ryzhenko, D.S.; Yurkov, G.Y.; Simunin, M.M.; Karpova, D.V.; et al. Low Cost Embedded Copper Mesh Based on Cracked Template for Highly Durability Transparent EMI Shielding Films. Materials 2022, 15, 1449. https://doi.org/10.3390/ma15041449
Voronin AS, Fadeev YV, Makeev MO, Mikhalev PA, Osipkov AS, Provatorov AS, Ryzhenko DS, Yurkov GY, Simunin MM, Karpova DV, et al. Low Cost Embedded Copper Mesh Based on Cracked Template for Highly Durability Transparent EMI Shielding Films. Materials. 2022; 15(4):1449. https://doi.org/10.3390/ma15041449
Chicago/Turabian StyleVoronin, Anton S., Yurii V. Fadeev, Mstislav O. Makeev, Pavel A. Mikhalev, Alexey S. Osipkov, Alexander S. Provatorov, Dmitriy S. Ryzhenko, Gleb Y. Yurkov, Mikhail M. Simunin, Darina V. Karpova, and et al. 2022. "Low Cost Embedded Copper Mesh Based on Cracked Template for Highly Durability Transparent EMI Shielding Films" Materials 15, no. 4: 1449. https://doi.org/10.3390/ma15041449
APA StyleVoronin, A. S., Fadeev, Y. V., Makeev, M. O., Mikhalev, P. A., Osipkov, A. S., Provatorov, A. S., Ryzhenko, D. S., Yurkov, G. Y., Simunin, M. M., Karpova, D. V., Lukyanenko, A. V., Kokh, D., Bainov, D. D., Tambasov, I. A., Nedelin, S. V., Zolotovsky, N. A., & Khartov, S. V. (2022). Low Cost Embedded Copper Mesh Based on Cracked Template for Highly Durability Transparent EMI Shielding Films. Materials, 15(4), 1449. https://doi.org/10.3390/ma15041449