Bioactive Properties of Composites Based on Silicate Glasses and Different Silver and Gold Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Silver Iodide and Sperical Gold Nanocages
2.2.1. Synthesis of Silver Iodide
2.2.2. Synthesis of Spherical Gold Nanocages
2.2.3. Synthesis of Silver Iodide with Spherical Gold Nanocages
2.3. Synthesis of Bioactive Glasses with Silver and Gold Content
2.4. Characterization of AgIAu Composites
2.5. Structural and Morphological Characterization of Bioactive Glass Composites
2.6. In Vitro Bioactivity Assays
2.7. Cell Viability Assay
2.8. Antibacterial Activity
2.8.1. Microorganism and Culture Conditions
2.8.2. Microdilution Method
2.9. Statistical Analysis
3. Results and Discussion
3.1. Characterization of The Composites Containing AgI Microcrystals, Spherical Gold Nanocages, or AgIAu Nanostructures
3.2. Characterization and In Vitro Bioactivity of Bioactive Glass Composites
3.3. Influence of Silver and Gold on Cell Viability and Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kargozar, S.; Mozafari, M.; Hamzehlou, S.; Baino, F. Using Bioactive Glasses in the Management of Burns. Front. Bioeng. Biotechnol. 2019, 7, 62. [Google Scholar] [CrossRef] [PubMed]
- Craciun, A.M.; Focsan, M.; Magyari, K.; Vulpoi, A.; Pap, Z. Surface Plasmon Resonance or Biocompatibility-Key Properties for Determining the Applicability of Noble Metal Nanoparticles. Materials 2017, 10, 836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schatkoski, V.M.; do Amaral Montanheiro, T.L.; de Menezes, B.R.C.; Pereira, R.M.; Rodrigues, K.F.; Ribas, R.G.; Morais da Silva, D.; Thim, G.P. Current Advances Concerning the Most Cited Metal Ions Doped Bioceramics and Silicate-Based Bioactive Glasses for Bone Tissue Engineering. Ceram. Int. 2021, 47, 2999–3012. [Google Scholar] [CrossRef]
- Pantulap, U.; Arango-Ospina, M.; Boccaccini, A.R. Bioactive glasses incorporating less-common ions to improve biological and physical properties. J. Mater. Sci. Mater. Med. 2022, 33, 3. [Google Scholar] [CrossRef]
- Cavalu, S.; Banica, F.; Gruian, C.; Vanea, E.; Goller, G.; Simon, V. Microscopic and spectroscopic investigation of bioactive glasses for antibiotic controlled release. J. Mol. Struct. 2013, 1040, 47–52. [Google Scholar] [CrossRef]
- Yeh, Y.C.; Creran, B.; Rotello, V.M. Gold Nanoparticles: Preparation, Properties, and Applications in Bionanotechnology. Nanoscale 2012, 4, 1871–1880. [Google Scholar] [CrossRef]
- Sau, T.K.; Goia, D.V. Biomedical Applications of Gold Nanoparticles. In Fine Particles in Medicine and Pharmacy; Springer: Berlin/Heidelberg, Germany, 2011; pp. 101–145. ISBN 9781461403791. [Google Scholar]
- Lu, S.; Xia, D.; Huang, G.; Jing, H.; Wang, Y.; Gu, H. Concentration Effect of Gold Nanoparticles on Proliferation of Keratinocytes. Colloids Surf. B Biointerfaces 2010, 81, 406–411. [Google Scholar] [CrossRef]
- Liang, H.; Jin, C.; Ma, L.; Feng, X.; Deng, X.; Wu, S.; Liu, X.; Yang, C. Accelerated Bone Regeneration by Gold-Nanoparticle-Loaded Mesoporous Silica through Stimulating Immunomodulation. ACS Appl. Mater. Interfaces 2019, 11, 41758–41769. [Google Scholar] [CrossRef]
- Magyari, K.; Nagy-Simon, T.; Vulpoi, A.; Popescu, R.A.; Licarete, E.; Stefan, R.; Hernádi, K.; Papuc, I.; Baia, L. Novel Bioactive Glass-AuNP Composites for Biomedical Applications. Mater. Sci. Eng. C 2017, 76, 752–759. [Google Scholar] [CrossRef]
- Mârza, S.M.; Magyari, K.; Bogdan, S.; Moldovan, M.; Peştean, C.; Nagy, A.; Tǎbǎran, F.; Licarete, E.; Suarasan, S.; Dreanca, A.; et al. Skin Wound Regeneration with Bioactive Glass-Gold Nanoparticles Ointment. Biomed. Mater. 2019, 14, 025011. [Google Scholar] [CrossRef]
- Dreanca, A.; Muresan-Pop, M.; Taulescu, M.; Tóth, Z.R.; Bogdan, S.; Pestean, C.; Oren, S.; Toma, C.; Popescu, A.; Páll, E.; et al. Bioactive Glass-Biopolymers gold Nanoparticle Based Composites for Tissue Engineering Applications. Mater. Sci. Eng. C 2021, 123, 112006. [Google Scholar] [CrossRef] [PubMed]
- Pirii, L.E.; Friedrich, A.W.; Rossen, J.W.A.; Vogels, W.; Beerthuizen, G.I.J.M.; Nieuwenhuis, M.K.; Kooistra-Smid, A.M.D.; Bathoorn, E. Extensive Colonization with Carbapenemase-Producing Microorganisms in Romanian Burn Patients: Infectious Consequences from the Colectiv Fire Disaster. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 175–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huo, L.; Li, P. Metal Nanoparticles: Noble Metal Nanoparticles and Their Antimicrobial Properties; Wiley Online Library: Hoboken, NJ, USA, 2018; Chapter 8; ISBN 9783527807093. [Google Scholar]
- Yasuyuki, M.; Kunihiro, K.; Kurissery, S.; Kanavillil, N.; Sato, Y.; Kikuchi, Y. Antibacterial Properties of Nine Pure Metals: A Laboratory Study Using Staphylococcus Aureus and Escherichia Coli. Biofouling 2010, 26, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Fadeeva, I.V.; Goldberg, M.A.; Preobrazhensky, I.I.; Mamin, G.V.; Davidova, G.A.; Agafonova, N.V.; Fosca, M.; Russo, F.; Barinov, S.M.; Cavalu, S.; et al. Improved cytocompatibility and antibacterial properties of zinc-substituted brushite bone cement based on β-tricalcium phosphate. J. Mater. Sci. Mater. Med. 2021, 32, 99. [Google Scholar] [CrossRef]
- Bellantone, M.; Hench, L.L. Bioactive Behaviour of Sol-Gel Derived Antibacterial Bioactive Glass. Key Eng. Mater. 2001, 192–195, 617–620. [Google Scholar] [CrossRef]
- Rivadeneira, J.; Gorustovich, A. Bioactive Glasses as Delivery Systems for Antimicrobial Agents. J. Appl. Microbiol. 2017, 122, 1424–1437. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.; Balasubramanian, P.; Paterson, T.E.; Stein, R.; MacNeil, S.; Fiorilli, S.; Vitale-Brovarone, C.; Shepherd, J.; Boccaccini, A.R. Ag Modified Mesoporous Bioactive Glass Nanoparticles for Enhanced Antibacterial Activity in 3D Infected Skin Model. Mater. Sci. Eng. C 2019, 103, 109764. [Google Scholar] [CrossRef]
- Magyari, K.; Stefan, R.; Vodnar, D.C.; Vulpoi, A.; Baia, L. The Silver Influence on the Structure and Antibacterial Properties of the Bioactive 10B2O3- 30Na2O-60P2O 2 Glass. J. Non-Cryst. Solids 2014, 402, 182–186. [Google Scholar] [CrossRef]
- Vulpoi, A.; Simon, V.; Ylänen, H.; Simon, S. Development and in Vitro Assessment of Bioactive Glass/Polymer Nanostructured Composites with Silver. J. Compos. Mater. 2014, 48, 63–70. [Google Scholar] [CrossRef]
- Thiyagarajan, K.; Bharti, V.K.; Tyagi, S.; Tyagi, P.K.; Ahuja, A.; Kumar, K.; Raj, T.; Kumar, B. Synthesis of Non-Toxic, Biocompatible, and Colloidal Stable Silver Nanoparticle Using Egg-White Protein as Capping and Reducing Agents for Sustainable Antibacterial Application. RSC Adv. 2018, 8, 23213–23229. [Google Scholar] [CrossRef] [Green Version]
- Levard, C.; Mitra, S.; Yang, T.; Jew, A.D.; Badireddy, A.R.; Lowry, G.V.; Brown, G.E. Effect of Chloride on the Dissolution Rate of Silver Nanoparticles and Toxicity to E. Coli. Environ. Sci. Technol. 2013, 47, 5738–5745. [Google Scholar] [CrossRef] [PubMed]
- Feraru, A.; Tóth, Z.R.; Magyari, K.; Pap, Z.; Todea, M.; Mureșan-Pop, M.; Vodnar, D.C.; Licarete, E.; Hernadi, K.; Baia, L. Composites Based on Silicate Bioactive Glasses and Silver Iodide Microcrystals for Tissue Engineering Applications. J. Non-Cryst. Solids 2020, 547, 120293. [Google Scholar] [CrossRef]
- Sun, Y.; Xia, Y. Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium. J. Am. Chem. Soc. 2004, 126, 3892–3901. [Google Scholar] [CrossRef] [PubMed]
- Tóth, Z.R.; Kovács, G.; Hernádi, K.; Baia, L.; Pap, Z. The Investigation of the Photocatalytic Efficiency of Spherical Gold Nanocages/TiO2 and Silver Nanospheres/TiO2 Composites. Sep. Purif. Technol. 2017, 183, 216–225. [Google Scholar] [CrossRef]
- Magyari, K.; Tóth, Z.R.; Pap, Z.; Licarete, E.; Vodnar, D.C.; Todea, M.; Gyulavári, T.; Hernadi, K.; Baia, L. Insights into the Effect of Gold Nanospheres, Nanotriangles and Spherical Nanocages on the Structural, Morphological and Biological Properties of Bioactive Glasses. J. Non-Cryst. Solids 2019, 522, 119552. [Google Scholar] [CrossRef]
- Magyari, K.; Baia, L.; Vulpoi, A.; Simon, S.; Popescu, O.; Simon, V. Bioactivity Evolution of the Surface Functionalized Bioactive Glasses. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 103, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, M.P. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; National Committee for Clinical Laboratory Standards, Ed.; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2018; ISBN 978-1-56238. [Google Scholar]
- Ruparelia, J.P.; Chatterjee, A.K.; Duttagupta, S.P.; Mukherji, S. Strain Specificity in Antimicrobial Activity of Silver and Copper Nanoparticles. Acta Biomater. 2008, 4, 707–716. [Google Scholar] [CrossRef]
- Yu, H.; Huang, B.; Wang, H.; Yuan, X.; Jiang, L.; Wu, Z.; Zhang, J.; Zeng, G. Facile Construction of Novel Direct Solid-State Z-Scheme AgI/BiOBr Photocatalysts for Highly Effective Removal of Ciprofloxacin under Visible Light Exposure: Mineralization Efficiency and Mechanisms. J. Colloid Interface Sci. 2018, 522, 82–94. [Google Scholar] [CrossRef]
- Berry, C.R. Structure and Optical Absorytion of AgI Microcrystals. Phys. Rev. 1967, 161, 848. [Google Scholar] [CrossRef]
- Mozafari, M.; Banijamali, S.; Baino, F.; Kargozar, S.; Hill, R.G. Calcium Carbonate: Adored and Ignored in Bioactivity Assessment. Acta Biomater. 2019, 91, 35–47. [Google Scholar] [CrossRef]
- Feraru, A.; Tóth, Z.R.; Debreczeni, D.; Todea, M.; Popescu, R.A.; Gyulavari, T.; Sesarman, A.; Negrea, G.; Vodnar, D.C.; Hernadi, K.; et al. Influence of different silver species on the structure of bioactive silicate glasses. J. Non-Cryst. Solids 2022, 583, 121498. [Google Scholar] [CrossRef]
- Aguiar, H.; Serra, J.; González, P.; León, B. Structural Study of Sol-Gel Silicate Glasses by IR and Raman Spectroscopies. J. Non-Cryst. Solids 2009, 355, 475–480. [Google Scholar] [CrossRef]
- Gayathri, B.; Muthukumarasamy, N.; Velauthapillai, D.; Santhosh, S.B.; Asokan, V. Magnesium Incorporated Hydroxyapatite Nanoparticles: Preparation, Characterization, Antibacterial and Larvicidal Activity. Arab. J. Chem. 2018, 11, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Nicolini, V.; Varini, E.; Malavasi, G.; Menabue, L.; Menziani, M.C.; Lusvardi, G.; Pedone, A.; Benedetti, F.; Luches, P. The effect of composition on structural, thermal, redox and bioactive properties of Ce-containing glasses. Mater. Des. 2016, 97, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.D.; Jha, L.J.; Monteiro, F.J. In Vitro Calcium Phosphate Formation on SiO2-Na20-CaO-P205 Glass Reinforced Hydroxyapatite Composite: A Study by XPS Analysis. J. Mater. Sci. Mater. Med. 1996, 7, 181–185. [Google Scholar] [CrossRef]
Glass Samples (mol%) | Abbreviation | Silver Precursors | Silver Component Amount (mol%) | Silver Component Amount (at%) | Gold Component Amount (at%) |
---|---|---|---|---|---|
60SiO2⋅32CaO·8P2O5 | BG | – | – | – | – |
60SiO2⋅31.25CaO·8P2O5·0.75AgI | BG-AgI | Silver iodide | 0.75 | 0.25 | – |
60SiO2⋅31.1CaO·8P2O5·(0.75AgI+0.15Au2O) § | BG-AgI+AuNCs | Silver iodide and gold nanocages | 0.75 | 0.249 | 0.089 * |
60SiO2⋅31.1CaO·8P2O5·(0.75AgI-0.15Au2O) § | BG-AgIAu | Silver iodide with gold nanocages | 0.75 | 0.249 | 0.09 |
60SiO2⋅31.85CaO·8P2O5·0.15Au2O § | BG-AuNCs | Gold nanocages | – | 0.0024 | 0.089 * |
Sample | Elements (at%) | ||||
---|---|---|---|---|---|
Si | Ag | I | Au | ||
BG | Theoretical | 20.00 | - | - | - |
Heat-treated | 21.76 | - | - | - | |
BG-AgI | Theoretical | 20.00 | 0.25 | 0.25 | - |
Heat-treated | 18.51 | 0.17 | 0.25 | - | |
BG-AgIAu | Theoretical | 20.00 | 0.24 | 0.24 | 0.089 |
Heat-treated | 14.97 | 0.17 | 0.14 | 0.015 | |
BG-AgI+AuNCs | Theoretical | 20.00 | 0.24 | 0.24 | 0.09 |
Heat-treated | 16.10 | 0.3 | 0.22 | 0.015 | |
BG-AuNCs | Theoretical | 20 | 0.0024 | - | 0.089 |
Heat-treated | 17.82 | 0.22 | - | 0.074 |
Sample | Elements (at%) | Ratio | |||
---|---|---|---|---|---|
Si | Ca | P | Ca/P | ||
BG | Theoretical | 20.00 | 10.66 | 5.33 | 2 |
Heat-treated | 21.1 | 9.6 | 7.7 | 1.24 | |
Immersed in SBF | 16.4 | 11.8 | 9.4 | 1.25 | |
BG-AgI | Theoretical | 20.00 | 10.41 | 5.33 | 1.95 |
Heat-treated | 16.30 | 9.20 | 4.00 | 2.30 | |
Immersed in SBF | 8.40 | 12.80 | 9.60 | 1.33 | |
BG-AgIAu | Theoretical | 20.00 | 10.36 | 5.33 | 1.94 |
Heat-treated | 15.67 | 8.50 | 2.90 | 2.93 | |
Immersed in SBF | 2.30 | 16.30 | 11.70 | 1.39 | |
BG-AgI+AuNCs | Theoretical | 20.00 | 10.36 | 5.33 | 1.94 |
Heat-treated | 20.46 | 10.40 | 4.40 | 2.36 | |
Immersed in SBF | 6.9 | 13.7 | 10.2 | 1.34 | |
BG-AuNCs | Theoretical | 20 | 10.61 | 5.33 | 1.99 |
Heat-treated | 15.8 | 12.8 | 6.3 | 2.03 | |
Immersed in SBF | 3.9 | 15.8 | 12.1 | 1.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tóth, Z.-R.; Kiss, J.; Todea, M.; Kovács, G.; Gyulavári, T.; Sesarman, A.; Negrea, G.; Vodnar, D.C.; Szabó, A.; Baia, L.; et al. Bioactive Properties of Composites Based on Silicate Glasses and Different Silver and Gold Structures. Materials 2022, 15, 1655. https://doi.org/10.3390/ma15051655
Tóth Z-R, Kiss J, Todea M, Kovács G, Gyulavári T, Sesarman A, Negrea G, Vodnar DC, Szabó A, Baia L, et al. Bioactive Properties of Composites Based on Silicate Glasses and Different Silver and Gold Structures. Materials. 2022; 15(5):1655. https://doi.org/10.3390/ma15051655
Chicago/Turabian StyleTóth, Zsejke-Réka, János Kiss, Milica Todea, Gábor Kovács, Tamás Gyulavári, Alina Sesarman, Giorgiana Negrea, Dan C. Vodnar, Anna Szabó, Lucian Baia, and et al. 2022. "Bioactive Properties of Composites Based on Silicate Glasses and Different Silver and Gold Structures" Materials 15, no. 5: 1655. https://doi.org/10.3390/ma15051655
APA StyleTóth, Z. -R., Kiss, J., Todea, M., Kovács, G., Gyulavári, T., Sesarman, A., Negrea, G., Vodnar, D. C., Szabó, A., Baia, L., & Magyari, K. (2022). Bioactive Properties of Composites Based on Silicate Glasses and Different Silver and Gold Structures. Materials, 15(5), 1655. https://doi.org/10.3390/ma15051655