The Effects of Geometry Size and Initial Microstructure on Deformation Behavior of Electrically-Assisted Micro-Compression in Ti-6Al-4V Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. EAMC Tests and Microstructure Characterization
3. Results and Discussion
3.1. Geometry Size Effects of Joule Heat Temperature
3.2. The Effects of Geometry Size on Deformation Behavior
3.3. The Effects of Initial Microstructure on Deformation Behavior
4. Conclusions
- (1)
- The quasi-static Joule heat temperature of specimens increases non-linearly with the square of current density during EAMC. The heat equilibrium equation was established to quantify the effect of specimen size on Joule heat temperature by introducing the scale factor.
- (2)
- The Joule temperature scale effect has a greater effect on the flow stress than the sample size effect for specimens of different dimensions. The sample with a diameter of 0.5 mm displayed abnormal flow behavior, which is related to surface oxidation leading to formation of a brittle surface layer.
- (3)
- Both the martensite phase α′ and equiaxed α can exist simultaneously in compressed equiaxed microstructure specimens. The α→β phase transformation occurs below the β transus temperature, which is attributed to the local Joule heat effect and the scattering of drift electrons during EAMC.
- (4)
- Due to the low β phase content and narrow interlamellar spacing of α lamellae grains, specimens with widmannstatten microstructure exhibit higher strength, smaller hardening rate and more easy flow localization compared with basket-weave microstructures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sprecher, A.F.; Mannan, S.L.; Conrad, H. Overview No. 49: On the mechanisms for the electroplastic effect in metals. Acta Metall. 1986, 34, 1145–1162. [Google Scholar] [CrossRef]
- Ghiotti, A.; Bruschi, S.; Simonetto, E.; Gennari, C.; Calliari, I.; Bariani, P. Electroplastic effect on AA1050 aluminium alloy formability. CIRP Ann.-Manuf. Technol. 2018, 67, 289–292. [Google Scholar] [CrossRef]
- Roh, J.H.; Seo, J.J.; Hong, S.T.; Kim, M.J.; Han, H.H.; Roth, J.T. The mechanical behavior of 5052-H32 aluminum alloys under a pulsed electric current. Int. J. Plast. 2014, 58, 84–99. [Google Scholar] [CrossRef]
- Zheng, X.G.; Shi, Y.N.; Lu, K. Electro-healing cracks in nickel. Mater. Sci. Eng. A 2013, 561, 52–59. [Google Scholar] [CrossRef]
- Liang, P.; Lin, K. Non-deformation recrystallization of metal with electric current stressing. J. Alloy. Compd. 2017, 722, 690–697. [Google Scholar] [CrossRef]
- Zhao, Y.; Peng, L.; Lai, X. Influence of the electric pulse on springback during stretch U-bending of Ti-6Al-4V titanium alloy sheets. J. Mater. Process. Technol. 2018, 261, 12–23. [Google Scholar] [CrossRef]
- Xie, H.; Dong, X.; Ai, Z. Experimental investigation on electrically assisted cylindrical deep drawing of AZ31B magnesium alloy sheet. Int. J. Adv. Manuf. Technol. 2016, 86, 1063–1069. [Google Scholar] [CrossRef]
- Kim, W.; Yeom, K.H.; Thien, N.T.; Hong, S.T.; Min, B.K.; Oh, S.I.; Kim, M.J.; Han, H.N.; Lee, H.W. Electrically assisted blanking using the electroplasticity of ultra-high strength metal alloys. CIRP Ann.-Manuf. Technol. 2014, 63, 273–276. [Google Scholar] [CrossRef]
- Moradi, M.; Ng, M.K.; Lee, T. Interface characterization of Al-Cu microlaminates fabricated by electrically assisted roll bonding. J. Micro Nano-Manuf. 2017, 5, 031001. [Google Scholar] [CrossRef]
- Zhou, Y.T.; Kim, T.W. Two electrically-conducting stamps on the surface of piezoelectric materials. Int. J. Eng. Sci. 2014, 81, 146–162. [Google Scholar] [CrossRef]
- Honarpisheh, M.; Abdolhoseini, M.J.; Amini, S. Experimental and numerical investigation of the hot incremental forming of Ti-6Al-4V sheet using electrical current. Int. J. Adv. Manuf. Technol. 2016, 83, 2027–2037. [Google Scholar] [CrossRef]
- Liu, X.; Lan, S.; Ni, J. Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel. J. Mater. Process. Technol. 2015, 219, 112–123. [Google Scholar] [CrossRef]
- Fu, M.W.; Wang, J.L.; Korsunsky, A.M. A review of geometrical and microstructural size effects in micro-scale deformation processing of metallic alloy components. Int. J. Mach. Tools Manuf. 2016, 109, 94–125. [Google Scholar] [CrossRef]
- Fu, M.W.; Wang, J.L. Size effects in multi-scale materials processing and manufacturing. Int. J. Mach. Tools Manuf. 2021, 167, 103755. [Google Scholar] [CrossRef]
- Jiang, T.; Peng, L.; Yi, P.; Lai, X. Flow behavior and plasticity of Ti-6Al-4V under different electrically assisted treatments. Mater. Res. Express 2016, 3, 126505. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Zhan, M. Mechanism for the macro and micro behaviors of the Ni-based superalloy during electrically-assisted tension: Local Joule heating effect. J. Alloy. Compd. 2018, 742, 48–489. [Google Scholar] [CrossRef]
- Ross, C.D.; Kronenberger, T.J.; Roth, J.T. Effect of dc on the Formability of Ti-6Al-4V. J. Eng. Mater-T ASM 2009, 131, 031004. [Google Scholar] [CrossRef]
- Zheng, Q.; Shimizu, T.; Shiratori, T.; Yang, M. Tensile properties and constitutive model of ultrathin pure titanium foils at elevated temperatures in microforming assisted by resistance heating method. Mater. Des. 2014, 63, 389–397. [Google Scholar] [CrossRef]
- Lee, T.; Magargee, J.; Ng, M.N.; Cao, J. Constitutive analysis of electrically-assisted tensile deformation of CP-Ti based on non-uniform thermal expansion, plastic softening and dynamic strain aging. Int. J. Plast. 2017, 94, 44–56. [Google Scholar] [CrossRef]
- Hariharan, K.; Kim, M.J.; Hong, S.T.; Kim, D.; Song, J.H.; Lee, M.G.; Han, H.N. Electroplastic behaviour in an aluminium alloy and dislocation density based modelling. Mater. Des. 2017, 124, 131–142. [Google Scholar]
- Wang, X.; Xu, J.; Shan, D.; Guo, B.; Cao, J. Modeling of thermal and mechanical behavior of a magnesium alloy AZ31 during electrically-assisted micro-tension. Int. J. Plast. 2016, 85, 230–257. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xu, J.; Shan, D.; Guo, B.; Cao, J. Effects of specimen and grain size on electrically-induced softening behavior in uniaxial micro-tension of AZ31 magnesium alloy: Experiment and modeling. Mater. Des. 2017, 127, 134–143. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.X.; Qu, S.J.; Feng, A.H.; Shen, J.; Chen, D.L. Hot deformation behavior of Ti-6Al-4V alloy: Effect of initial microstructure. J. Alloy. Compd. 2017, 718, 170–181. [Google Scholar] [CrossRef]
- Mironov, S.; Murzinova, M.; Zherebtsov, S.; Salishchev, G.A.; Semiatin, S.L. Microstructure evolution during warm working of Ti-6Al-4V with a colony-a microstructure. Acta Mater. 2009, 57, 2470–2481. [Google Scholar] [CrossRef]
- Jiang, X.Q.; Fan, X.G.; Li, Q.; Zhan, M. Strengthened flow instability in hot deformation of titanium alloy with colony structure: On the effect of microstructure heterogeneity. J. Alloy. Compd. 2019, 801, 381–393. [Google Scholar] [CrossRef]
- Bieler, T.R.; Semiatin, S.L. The origins of heterogeneous deformation during primary hot working of Ti-6Al-4V. Int. J. Plast. 2002, 18, 1165–1189. [Google Scholar] [CrossRef]
- Lin, Y.C.; Jiang, X.Y.; Shuai, C.J.; Zhao, C.Y.; He, D.G.; Chen, M.S.; Chen, C. Effects of initial microstructures on hot tensile deformation behaviors and fracture characteristics of Ti-6Al-4V alloy. Mater. Sci. Eng. A 2018, 711, 293–302. [Google Scholar] [CrossRef]
- Bao, J.; Xu, J.; Bai, J.; Lv, S.; Shan, D.; Guo, B. Mechanical behavior and shear banding of electropulsing-assisted micro-scale shear-compression in Ti-6Al-4V alloy. Mater. Sci. Eng. A 2020, 771, 138647. [Google Scholar] [CrossRef]
- Bao, J.; Lv, S.; Zhang, M.; Shan, D.; Guo, B.; Xu, J. Multi-scale coupling coupling effects on flow localization during micro-compression deformation of Ti-6Al-4V alloy. Mater. Sci. Eng. A 2020, 793, 139888. [Google Scholar] [CrossRef]
- Bao, J.; Wang, C.; Bai, J.; Xu, J.; Shan, D.; Guo, B. Local softening deformation and phase transformation induced by electric current in electrically-assisted micro-compression of Ti-6Al-4V alloy. Mater. Sci. Eng. A 2022, 831, 142262. [Google Scholar] [CrossRef]
- Wu, H.; Sun, Z.; Cao, J.; Yin, Z. Diffusion transformation model in TA15 titanium alloy: The case of nonlinear cooling. Mater. Des. 2020, 191, 108598. [Google Scholar] [CrossRef]
- Ahmed, T.; Rack, H. Phase transformations during cooling in alpha+beta titanium alloys. Mater. Sci. Eng. A 1998, 243, 206–211. [Google Scholar] [CrossRef]
- Huang, J.; Xu, Z.; Deng, Y.; Peng, L. Electropulsing-induced alpha to beta phase transformation of Ti-6Al-4V. J. Manuf. Sci. Eng.-T ASME 2019, 141, 111012. [Google Scholar] [CrossRef]
- Kopec, M.; Wang, K.H.; Politis, D.J.; Wang, Y.Q.; Wang, L.L.; Lin, J.G. Formability and Microstructure Evolution Mechanisms of Ti6Al4V Alloy During a Novel Hot Stamping Process. Mater. Sci. Eng. A 2018, 719, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.G.; Jiang, X.Q.; Zeng, X.; Shi, Y.G.; Gao, P.F.; Zhan, M. Modeling the anisotropy of hot plastic deformation of two-phase titanium alloys with a colony microstructure. Int. J. Plast. 2018, 104, 173–195. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, J.; Lv, S.; Wang, B.; Shan, D.; Guo, B.; Xu, J. The Effects of Geometry Size and Initial Microstructure on Deformation Behavior of Electrically-Assisted Micro-Compression in Ti-6Al-4V Alloy. Materials 2022, 15, 1656. https://doi.org/10.3390/ma15051656
Bao J, Lv S, Wang B, Shan D, Guo B, Xu J. The Effects of Geometry Size and Initial Microstructure on Deformation Behavior of Electrically-Assisted Micro-Compression in Ti-6Al-4V Alloy. Materials. 2022; 15(5):1656. https://doi.org/10.3390/ma15051656
Chicago/Turabian StyleBao, Jianxing, Shoudan Lv, Bo Wang, Debin Shan, Bin Guo, and Jie Xu. 2022. "The Effects of Geometry Size and Initial Microstructure on Deformation Behavior of Electrically-Assisted Micro-Compression in Ti-6Al-4V Alloy" Materials 15, no. 5: 1656. https://doi.org/10.3390/ma15051656
APA StyleBao, J., Lv, S., Wang, B., Shan, D., Guo, B., & Xu, J. (2022). The Effects of Geometry Size and Initial Microstructure on Deformation Behavior of Electrically-Assisted Micro-Compression in Ti-6Al-4V Alloy. Materials, 15(5), 1656. https://doi.org/10.3390/ma15051656