Investigation of Warpage for Multi-Die Fan-Out Wafer-Level Packaging Process
Abstract
:1. Introduction
2. Structure and Manufacturing Process of the FOWLP
2.1. Structure
2.2. Process
3. Material Properties Characterization
3.1. Linear Viscoelasticity
3.2. Property Characterization
3.3. Property Verification
4. Results and Discussion
4.1. Evolution of Warpage
4.2. Effects of EMC
4.3. Effects of Carrier
5. Conclusions
- The viscoelastic properties of EMC in FEA can predict the wafer warpage more accurately than elastic properties under the process. The warpage considering the viscoelastic properties of PI is very close to that using elastic properties.
- In the process, the molding has a great influence on the warpage. The wafer warpage can be reduced by lowering the thickness of EMC and selecting an EMC with a smaller CTE.
- Carrier 2 also has a very significant effect on warpage. The wafer warpage can be optimized by increasing the thickness of carrier 2 and selecting a carrier 2 with a matched CTE.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Semiconductor Industry Association. The International Technology Roadmap for Semiconductors. 2007 Edition. Available online: https://www.semiconductors.org/wp-content/uploads/2018/08/20071_Executive-Summary-.pdf (accessed on 15 October 2021).
- Tang, H.; Lu, M.; Tsai, J.; Jiang, J.; Cheng, H.; Lu, T.; Wang, Y.-P. Integration benefits and challenges on Fan-Out to enable system in package for IoT/Wearable Devices. In Proceedings of the 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC), Singapore, 6–9 December 2017; pp. 1–4. [Google Scholar]
- Sham, M.L.; Fu, H.; Lin, J.r.; Leung, L.w.; Chen, Y.C.; Chung, T. Product-Oriented System-in-Package (SiP) Technology for Next Generation Wireless/Portable Electronics. In Proceedings of the 2006 1st Electronic Systemintegration Technology Conference, Dresden, Germany, 5–7 September 2006. [Google Scholar]
- Kim, S.; Kim, Y.; Cho, K.; Song, J.; Kim, J. Design and measurement of a novel on-interposer active power distribution network for efficient simultaneous switching noise suppression in 2.5-D/3-D IC. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 317–328. [Google Scholar] [CrossRef]
- Su, Y.F.; Chiang, K.N.; Liang, S.Y. Design and reliability assessment of novel 3D-IC packaging. J. Mech. 2017, 33, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Brunnbauer, M.; Furgut, E.; Beer, G.; Meyer, T.; Hedler, H.; Belonio, J.; Nomura, E.; Kiuchi, K.; Kobayashi, K. An embedded device technology based on a molded reconfigured wafer. In Proceedings of the 56th Electronic Components and Technology Conference, San Diego, CA, USA, 30 May–2 June 2006; p. 5. [Google Scholar]
- Zwenger, C.; Huemoeller, R.; Kim, J.H.; Kim, D.J.; Do, W.C.; Seo, S.M. Silicon wafer integrated fan-out technology. In Proceedings of the International Microelectronics Assembly and Packaging Society Additional Conference, Raleigh, NC, USA, 9–12 October 2017; pp. 217–247. [Google Scholar]
- Braun, T.; Becker, K.-F.; Voges, S.; Thomas, T.; Kahle, R.; Bauer, J.; Aschenbrenner, R.; Lang, K.-D. From wafer level to panel level mold embedding. In Proceedings of the 2013 IEEE 63rd Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 28–31 May 2013; pp. 1235–1242. [Google Scholar]
- Tseng, C.F.; Liu, C.S.; Wu, C.H.; Yu, D. InFO (wafer level integrated fan-out) technology. In Proceedings of the 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 31 May–3 June 2016; pp. 1–6. [Google Scholar]
- Chen, C.; Yu, D.; Wang, T.; Xiao, Z.; Wan, L. Warpage Prediction and Optimization for Embedded Silicon Fan-Out Wafer-Level Packaging Based on an Extended Theoretical Model. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 9, 845–853. [Google Scholar] [CrossRef]
- Cheng, H.C.; Tai, L.C.; Liu, Y.C. Theoretical and Experimental Investigation of Warpage Evolution of Flip Chip Package on Packaging during Fabrication. Materials 2021, 14, 4816. [Google Scholar] [CrossRef] [PubMed]
- Chuang, W.C.; Chen, W.L. Study on the Strip Warpage Issues Encountered in the Flip-Chip Process. Materials 2022, 15, 323. [Google Scholar] [CrossRef]
- Deng, S.S.; Hwang, S.J.; Lee, H.H. Warpage prediction and experiments of fan-out wafer level package during encapsulation process. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 452–458. [Google Scholar] [CrossRef]
- Liu, H.W.; Liu, Y.W.; Ji, J.; Liao, J.; Chen, A.; Chen, Y.-H.; Kao, N.; Lai, Y.C. Warpage characterization of panel Fan-out (P-FO) package. In Proceedings of the 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 27–30 May 2014; pp. 1750–1754. [Google Scholar]
- Yeh, S.S.; Lin, P.Y.; Lee, K.C.; Wang, J.H.; Lin, W.Y.; Yew, M.C.; Lai, P.C. Warpage modeling and characterization of the viscoelastic relaxation for cured molding process in fan-out packages. In Proceedings of the 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 30 May–2 June 2017; pp. 841–846. [Google Scholar]
- Takekoshi, M.; Nishido, K.; Okada, Y.; Suzuki, N.; Nonaka, T. Warpage suppression during FO-WLP fabrication process. In Proceedings of the 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 30 May–2 June 2017; pp. 902–908. [Google Scholar]
- Lau, J.H.; Li, M.; Yang, L.; Li, M.; Xu, I.; Chen, T.; Chen, S.; Yong, Q.X.; Madhukumar, J.P.; Kai, W.; et al. Warpage measurements and characterizations of fanout wafer-level packaging with large chips and multiple redistributed layers. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 1729–1737. [Google Scholar] [CrossRef]
- Cheng, H.C.; Wu, Z.D.; Liu, Y.C. Viscoelastic Warpage Modeling of Fan-Out Wafer-Level Packaging During Wafer-Level Mold Cure Process. IEEE Trans. Compon. Packag. Manuf. Technol. 2020, 10, 1240–1250. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X.; Lim, S.P.S.; Lim, S.S.B.; Lau, B.L.; Han, Y.; Jong, M.C.; Liu, S.; Wang, X.; Andriani, Y. Wafer Level Warpage Modelling and Validation for FOWLP Considering Effects of Viscoelastic Material Properties Under Process Loadings. In Proceedings of the 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 28–31 May 2019; pp. 1543–1549. [Google Scholar]
- Zhu, C.; Ning, W.; Xu, G.; Luo, L. Influence of the Viscoelastic Properties of the Polyimide Dielectric Coating on the Wafer Warpage. J. Electron. Mater. 2014, 43, 3255–3262. [Google Scholar] [CrossRef]
Num. | Size (mm) | Thickness (μm) | Diameter of Bump (μm) | Height of Bump (μm) |
---|---|---|---|---|
Die 1 | 4 × 8 | 250 | 150 | 75 |
Die 2 | 4 × 4 | 350 | 20 | 25 |
Die 3 | 2 × 2 | 200 | 60 | 47 |
Layer | Thickness (μm) | Layer | Thickness (μm) | Layer | Thickness (μm) |
---|---|---|---|---|---|
PI 1 | 5 | RDL 1 | 2 | SiO2 | 3 |
PI 2 | 7 | RDL 2 | 4 | ||
PI 3 | 8 | RDL 3 | 5 |
Conditions of Curing | Thickness (μm) | |||
---|---|---|---|---|
Prepreg Curing | Post Curing | |||
T (°C) | t (min) | T (°C) | t (min) | |
125 | 10 | 150 | 60 | 500 |
i | Ei (GPa) | αi | τi (s) | i | Ei (GPa) | αi | τi (s) | i | Ei (GPa) | αi | τi (s) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.14485 | 0.00727 | 1010 | 10 | 2.63466 | 0.13223 | 10−1 | 19 | 0.33030 | 0.01658 | 10−10 |
2 | 0.20816 | 0.01045 | 109 | 11 | 2.19706 | 0.11027 | 10−2 | 20 | 0.21223 | 0.01065 | 10−11 |
3 | 0.23859 | 0.01197 | 106 | 12 | 1.59056 | 0.07983 | 10−3 | 21 | 0.20900 | 0.01049 | 10−12 |
4 | 0.23046 | 0.01157 | 105 | 13 | 1.08914 | 0.05466 | 10−4 | 22 | 0.21489 | 0.01078 | 10−13 |
5 | 0.46783 | 0.02348 | 104 | 14 | 0.71367 | 0.03582 | 10−5 | 23 | 0.09099 | 0.00457 | 10−14 |
6 | 0.42749 | 0.02145 | 103 | 15 | 0.52184 | 0.02619 | 10−6 | 24 | 0.20694 | 0.01039 | 10−15 |
7 | 1.11779 | 0.05610 | 102 | 16 | 0.39181 | 0.01966 | 10−7 | 25 | 0.55236 | 0.02772 | 10−16 |
8 | 1.91552 | 0.09614 | 10 | 17 | 0.35507 | 0.01782 | 10−8 | E∞ | 1.1 | ||
9 | 2.49683 | 0.12531 | 1 | 18 | 0.27711 | 0.01391 | 10−9 |
Conditions of Curing | Thickness (μm) | |||||
---|---|---|---|---|---|---|
Prepreg Curing | Post Curing | |||||
T (°C) | t (min) | T (°C) | t (min) | T (°C) | t (min) | |
100 | 5 | 120 | 5 | 200 | 60 | 10 |
i | Ei (MPa) | αi | τi (s) | i | Ei (MPa) | αi | τi (s) |
---|---|---|---|---|---|---|---|
1 | 155.96 | 0.05883 | 100 | 10 | 70.66 | 0.02665 | 10−7 |
2 | 215.04 | 0.08112 | 10 | 11 | 89.02 | 0.03358 | 10−8 |
3 | 206.44 | 0.07787 | 1 | 12 | 60.97 | 0.02300 | 10−9 |
4 | 205.31 | 0.07745 | 10−1 | 13 | 65.46 | 0.02469 | 10−10 |
5 | 197.89 | 0.07465 | 10−2 | 14 | 87.40 | 0.03297 | 10−11 |
6 | 131.96 | 0.04978 | 10−3 | 15 | 87.26 | 0.03292 | 10−12 |
7 | 109.97 | 0.04148 | 10−4 | 16 | 77.26 | 0.02914 | 10−13 |
8 | 96.73 | 0.03649 | 10−5 | E∞ | 700 | ||
9 | 93.61 | 0.03531 | 10−6 |
Material | CTE (ppm/°C) | Young’s Modulus (GPa) | Poisson’s Ratio |
---|---|---|---|
Si | 2.8 | 131 | 0.28 |
Copper | 17 | 125 | 0.34 |
SiO2 | 0.5 | 73 | 0.3 |
Underfill | 42 | 7.1 | 0.3 |
PI | 54 | 2.5 | 0.3 |
EMC | 7(<Tg)/22(>Tg) | 19 | 0.26 |
Die 1 | Die 2 | Die 3 | |
---|---|---|---|
CTE (ppm/°C) | X,Y 45.109 Z 33.722 | X,Y 45.220 Z 32.123 | X,Y 45.206 Z 31.631 |
Young’s modulus (GPa) | X,Y 7.683 Z 10.892 | X,Y 7.897 Z 12.145 | X,Y 7.976 Z 12.591 |
Shear modulus (GPa) | XY 2.814 XZ,YZ 2.953 | XY 2.874 XZ,YZ 3.035 | XY 2.898 XZ,YZ 3.065 |
Poisson’s ratio | XY 0.365 XZ,YZ 0.215 | XY 0.373 XZ,YZ 0.200 | XY 0.376 XZ,YZ 0.195 |
Material | CTE (ppm/°C) | Young’s Modulus (Gpa) | Poisson’s Ratio |
---|---|---|---|
EMC_2 | 8(<Tg)/30(>Tg) | 19 | 0.26 |
EMC_3 | 10(<Tg)/40(>Tg) | 19 | 0.261 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Su, M.; Ma, R.; Zhou, Y.; Li, J.; Cao, L. Investigation of Warpage for Multi-Die Fan-Out Wafer-Level Packaging Process. Materials 2022, 15, 1683. https://doi.org/10.3390/ma15051683
Chen C, Su M, Ma R, Zhou Y, Li J, Cao L. Investigation of Warpage for Multi-Die Fan-Out Wafer-Level Packaging Process. Materials. 2022; 15(5):1683. https://doi.org/10.3390/ma15051683
Chicago/Turabian StyleChen, Chuan, Meiying Su, Rui Ma, Yunyan Zhou, Jun Li, and Liqiang Cao. 2022. "Investigation of Warpage for Multi-Die Fan-Out Wafer-Level Packaging Process" Materials 15, no. 5: 1683. https://doi.org/10.3390/ma15051683
APA StyleChen, C., Su, M., Ma, R., Zhou, Y., Li, J., & Cao, L. (2022). Investigation of Warpage for Multi-Die Fan-Out Wafer-Level Packaging Process. Materials, 15(5), 1683. https://doi.org/10.3390/ma15051683