Long-Term Corrosion Behavior of Strong and Ductile High Mn-Low Cr Steel in Acidic Aqueous Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Information
2.2. Open Circuit Potential and Linear Polarization Resistance Measurements
2.3. Electrochemical Impedance Measurements
2.4. Analysis of the Corrosion Scale
3. Results and Discussion
3.1. Electrochemical Corrosion Behaviors
3.2. Characteristics of the Corrosion Scales
3.3. Corrosion Mechanism of High Mn-Low Cr Steel
4. Conclusions
- At the early stages of immersion in an acidic solution, the 24Mn3Cr steel sample had a much higher corrosion current density (icorr) and a lower polarization resistance (Rp) compared to the two ferritic steel samples. In particular, the 9Ni steel sample showed the highest corrosion resistance with the lowest corrosion current and highest polarization resistance. With a prolonged immersion, however, these trends were gradually reversed, and the order of corrosion resistance measured at the later stages of immersion was 9Ni < APIX70 < 24Mn3Cr steel samples. In addition, 24Mn3Cr had the highest scale resistance (Rscale) and the lowest depression angle (α). These results are in contrast to those obtained in a neutral environment reported previously.
- The formation kinetics of the (Fe,Cr)-enriched oxide scale on the 24Mn3Cr steel sample were much slower under acidic conditions. Considering that the oxide scale can serve as an effective barrier against further corrosion, a longer incubation time is required for the stable formation of the oxide scale and to ensure a comparatively higher corrosion resistance in an acidic environment. On the other hand, the 9Ni steel sample was covered with a thicker (Fe,Ni)-based scale, but the densification and Ni-enriched level in the scale was lowered at later corrosion stages, due presumably to the thermodynamic instability of Ni-based oxides in acidic environments. Furthermore, the APIX70 steel sample was covered only by an Fe-based scale which hardly contributed to the improvement of the corrosion resistance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jeong, Y.J.; Kim, S.O.; Park, J.S.; Lee, J.W.; Hwang, J.-K.; Lee, S.G.; Choi, J.K.; Kim, S.J. Strong and ductile Fe-24Mn-3Cr alloy resistant against erosion-corrosion. NPJ Mater. Degrad. 2021, 5, 47. [Google Scholar] [CrossRef]
- Vladimir, T.; Andrey, B.; Rustam, K. Improve mechanical properties of 18%Mn TWIP steels by cold rolling and annealing. Metals 2019, 9, 776. [Google Scholar]
- Nam, Y.-H.; Park, J.-S.; Baek, U.-B.; Suh, J.-Y.; Nahm, S.-H. Low-temperature tensile and impact properties of hydrogen-charged high-manganese steel. Int. J. Hydrog. Energy 2019, 44, 7000–7013. [Google Scholar] [CrossRef]
- Jones, D.A. Principles and Prevention of Corrosion, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Ganesan, S.; Prabhu, G.; Popov, B.N. Development of Zn-Mn Alloy Based Sacrificial Coatings. ECS Trans. 2013, 50, 405–424. [Google Scholar] [CrossRef]
- Tzvetkoff, T.; Gencheva, P. Mechanism of formation of corrosion layers on nickel and nickel-based alloys in melts containing oxyanions-A review. Mater. Chem. Phys. 2003, 82, 897–904. [Google Scholar] [CrossRef]
- Liu, R.; Chen, X.P.; Shi, Q.N. Effect of Ni on Corrosion Resistance of Weathering Steels in Wet/Dry Environments. Adv. Mater. Res. 2014, 989–994, 420–424. [Google Scholar] [CrossRef]
- Park, J.H.; Seo, H.S.; Kim, K.Y.; Kim, S.J. The Effect of Cr on the Electrochemical Corrosion of High Mn Steel in a Sweet Environment. J. Electrochem. Soc. 2016, 163, C791–C797. [Google Scholar] [CrossRef]
- Kim, B.; Kim, S.; Kim, H. Effects of Alloying Elements (Cr, Mn) on Corrosion Properties of the High-Strength Steel in 3.5% NaCl Solution. Adv. Mater. Sci. Eng. 2018, 2018, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bosch, J.; Martin, U.; Aperador, W.; Bastidas, J.; Ress, J.; Bastidas, D. Corrosion Behavior of High-Mn Austenitic Fe–Mn–Al–Cr–C Steels in NaCl and NaOH Solutions. Materials 2021, 14, 425. [Google Scholar] [CrossRef]
- Standard Test Method for Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen Induced Cracking; NACE TM 0284-96A; NACE International: Houston, TX, USA, 2016.
- Wagner, C.; Traud, W. Additive hypothesis for oxidation-reduction reactions. Z. Electrochem. 1938, 44, 391–454. [Google Scholar]
- Mehta, Y.; Trivedi, S.; Chandra, K.; Mishra, P. Effect of Silicon on the Corrosion Behavior of Powder-Processed Phosphoric Irons. J. Miner. Mater. Charact. Eng. 2010, 09, 855–864. [Google Scholar] [CrossRef]
- Xing, W.D.; Lee, M.S.; Choi, S.H. Separation of Ag(I) by Ion Exchange and Cementation from a Raffinate Containing Ag(I), Ni(II) and Zn(II) and Traces of Cu(II) and Sn(II). Processes 2018, 6, 112. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Kang, S.; Xu, M.; Li, P. Corrosion Product Film of a Medium-Mn Steel Exposed to Simulated Marine Splash Zone Environment. Materials 2021, 14, 5652. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Shukla, S.K.; Quraishi, M.A. Corrosion behavior of mild steel in sulphuric acid solution in presence of ceftazidime. Int. J. Electrochem. Sci. 2011, 6, 5802–5814. [Google Scholar]
- Wang, H.B.; Shi, H.; Hong, T.; Kang, C.; Jepson, W.P. Characterization of inhibitor and corrosion product film using electrochemical impedance spectroscopy (EIS). In Proceedings of the Corrosion2001-NACE International Annual Conference and Exposition, Houston, TX, USA, 11–16 March 2001. Paper No. 01023. [Google Scholar]
- Palomar-Pardavé, M.; Romo, M.A.R.; Herrera-Hernández, H.; Abreu-Quijano, M.; Likhanova, N.; Uruchurtu, J.; Juarez, J. Influence of the alkyl chain length of 2 amino 5 alkyl 1,3,4 thiadiazole compounds on the corrosion inhibition of steel immersed in sulfuric acid solutions. Corros. Sci. 2012, 54, 231–243. [Google Scholar] [CrossRef]
- Flis, J.; Pickering, H.; Osseo-Asare, K. Interpretation of impedance data for reinforcing steel in alkaline solution containing chlorides and acetates. Electrochim. Acta 1998, 43, 1921–1929. [Google Scholar] [CrossRef]
- Amin, M.A.; El-Rehim, S.S.A.; El-Sherbini, E.E.F.; Bayoumi, R.S. The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid Part I. Weight loss, polarization, EIS, PZC, EDX and SEM studies. Electrochim. Acta 2007, 52, 3588–3600. [Google Scholar] [CrossRef]
- Guo, L.; Tan, J.; Kaya, S.; Leng, S.; Li, Q.; Zhang, F. Multidimensional insights into the corrosion inhibition of 3,3-dithiodipropionic acid on Q235 steel in H2SO4 medium: A combined experimental and in silico investigation. J. Colloid Interface Sci. 2020, 570, 116–124. [Google Scholar] [CrossRef]
- Tan, B.; Zhang, S.; Cao, X.; Fu, A.; Guo, L.; Marzouki, R.; Li, W. Insight into the anti-corrosion performance of two food flavors as eco-friendly and ultra-high performance inhibitors for copper in sulfuric acid medium. J. Colloid Interface Sci. 2021, 609, 838–851. [Google Scholar] [CrossRef]
- Jüttner, K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces. Electrochim. Acta 1990, 35, 1501–1508. [Google Scholar] [CrossRef]
- Shin, S.-B.; Song, S.-J.; Shin, Y.-W.; Kim, J.-G.; Park, B.-J.; Suh, Y.-C. Effect of Molybdenum on the Corrosion of Low Alloy Steels in Synthetic Seawater. Mater. Trans. 2016, 57, 2116–2121. [Google Scholar] [CrossRef] [Green Version]
- Lebrini, M.; Lagrenée, M.; Vezin, H.; Traisnel, M.; Bentiss, F. Experimental and theoretical study for corrosion inhibition of mild steel in normal hydrochloric acid solution by some new macrocyclic polyether compounds. Corros. Sci. 2007, 49, 2254–2269. [Google Scholar] [CrossRef]
- McCarty, K.F.; Boehme, D.R. A raman study of the systems Fe3-xCrxO4 and Fe2-xCrxO3. J. Solid State Chem. 1989, 79, 19–27. [Google Scholar] [CrossRef]
- Huang, L.-F.; Hutchison, M.J.; Santucci, J.R.J.; Scully, J.R.; Rondinelli, J.M. Improved Electrochemical Phase Diagrams from Theory and Experiment: The Ni–Water System and Its Complex Compounds. J. Phys. Chem. C 2017, 121, 9782–9789. [Google Scholar] [CrossRef]
- Awan, I.Z.; Khan, A.Q. Corrosion-occurrence & prevention. J. Chem. Soc. Park. 2018, 40, 602–655. [Google Scholar]
C | Mn | Si | Cu | Cr | Ni | |
---|---|---|---|---|---|---|
24Mn3Cr | 0.3–0.4 | ~24 | 0.25–0.35 | <0.5 | 3–3.5 | 0.02–0.03 |
APIX70 | 0.01–0.1 | 1–2 | 0.2–0.3 | <0.05 | 0.1–0.2 | 0.01–0.02 |
9Ni | 0.01–0.1 | 0.6–0.7 | 0.2–0.3 | <0.01 | <0.02 | ~9 |
APIX70 | ||||||||||
icorr (μA·cm−2) | Ecorr (V) | Rp (Ω·cm2) | βa (V·Decade−1) | βc (V·Decade−1) | ||||||
Time | μ | σ | μ | σ | μ | σ | μ | σ | μ | σ |
1 h | 56.7 | 2.81 | −0.6448 | 0.008 | 306.07 | 9.21 | 0.03 | 0.007 | 0.1 | 0.001 |
1 d | 43.84 | 5.11 | −0.6501 | 0.009 | 392.59 | 6.55 | 0.06 | 0.007 | 0.12 | 0.003 |
7 d | 26.03 | 2.13 | −0.6782 | 0.011 | 644.81 | 11.21 | 0.06 | 0.006 | 0.12 | 0.005 |
14 d | 27.07 | 1.32 | −0.6701 | 0.016 | 608.72 | 8.97 | 0.06 | 0.008 | 0.12 | 0.001 |
21 d | 28.48 | 1.85 | −0.6725 | 0.008 | 580.32 | 7.25 | 0.06 | 0.007 | 0.12 | 0.002 |
28 d | 23.31 | 1.22 | −0.6786 | 0.006 | 683.28 | 8.22 | 0.07 | 0.006 | 0.11 | 0.001 |
35 d | 23.38 | 3.64 | −0.6808 | 0.005 | 742.01 | 15.11 | 0.07 | 0.005 | 0.12 | 0.002 |
42 d | 21.01 | 3.45 | −0.6762 | 0.008 | 782.12 | 13.58 | 0.06 | 0.003 | 0.12 | 0.005 |
9Ni | ||||||||||
icorr (μA·cm−2) | Ecorr (V) | Rp (Ω·cm2) | βa (V·Decade−1) | βc (V·Decade−1) | ||||||
Time | μ | σ | μ | σ | μ | σ | μ | σ | μ | σ |
1 h | 11.1 | 1.01 | −0.5249 | 0.008 | 356.41 | 8.12 | 0.03 | 0.006 | 0.12 | 0.002 |
1 d | 18.64 | 2.11 | −0.5905 | 0.009 | 908.38 | 11.52 | 0.05 | 0.008 | 0.12 | 0.003 |
7 d | 20.28 | 1.28 | −0.6119 | 0.011 | 756.89 | 16.21 | 0.11 | 0.004 | 0.12 | 0.001 |
14 d | 32.83 | 2.32 | −0.6228 | 0.023 | 461.96 | 12.08 | 0.12 | 0.004 | 0.12 | 0.001 |
21 d | 40.87 | 3.11 | −0.6291 | 0.025 | 442.86 | 11.02 | 0.12 | 0.008 | 0.08 | 0.002 |
28 d | 39.26 | 6.12 | −0.6297 | 0.018 | 388.72 | 10.11 | 0.12 | 0.007 | 0.06 | 0.006 |
35 d | 43.25 | 5.44 | −0.6294 | 0.014 | 343.47 | 8.89 | 0.12 | 0.006 | 0.05 | 0.004 |
42 d | 43.57 | 4.89 | −0.6399 | 0.022 | 349.22 | 9.87 | 0.08 | 0.005 | 0.02 | 0.001 |
24Mn3Cr | ||||||||||
icorr (μA·cm−2) | Ecorr (V) | Rp (Ω·cm2) | βa (V·Decade−1) | βc (V·Decade−1) | ||||||
Time | μ | σ | μ | σ | μ | σ | μ | σ | μ | σ |
1 h | 95.12 | 6.12 | −0.7191 | 0.012 | 189.03 | 5.22 | 0.09 | 0.008 | 0.12 | 0.002 |
1 d | 105.28 | 7.55 | −0.7179 | 0.016 | 158.53 | 2.11 | 0.10 | 0.007 | 0.12 | 0.001 |
7 d | 68.24 | 6.33 | −0.7112 | 0.011 | 258.72 | 1.59 | 0.11 | 0.009 | 0.12 | 0.003 |
14 d | 36.48 | 1.21 | −0.7119 | 0.009 | 453.14 | 7.07 | 0.06 | 0.003 | 0.12 | 0.005 |
21 d | 30.86 | 1.23 | −0.7004 | 0.011 | 541.89 | 8.55 | 0.05 | 0.009 | 0.11 | 0.006 |
28 d | 23.3 | 3.11 | −0.6925 | 0.008 | 679.79 | 13.27 | 0.05 | 0.009 | 0.12 | 0.004 |
35 d | 17.31 | 2.33 | −0.6838 | 0.013 | 936.40 | 20.33 | 0.05 | 0.007 | 0.12 | 0.004 |
42 d | 15.35 | 1.28 | −0.692 | 0.009 | 1158.13 | 23.12 | 0.05 | 0.009 | 0.11 | 0.006 |
APIX70 | ||||||||||||||
Rs (Ω·cm2) | Qscale (×10−4 F·cm−2·sn−1) | Rscale (Ω·cm2) | nscale | Qdl (×10−4 F·cm−2·sn−1) | Rct (Ω·cm2) | ndl | ||||||||
Time | μ | σ | μ | σ | μ | σ | μ | σ | μ | σ | μ | σ | μ | σ |
1 h | 26.61 | 1.17 | - | - | - | - | - | - | 2.45 | 0.231 | 263.5 | 6.51 | 0.824 | 0.006 |
1 d | 24.24 | 1.21 | - | - | - | - | - | - | 2.82 | 0.55 | 433.3 | 8.21 | 0.794 | 0.008 |
7 d | 24.07 | 1.85 | 0.88 | 0.07 | 32.1 | 2.87 | 0.872 | 0.011 | 3.54 | 0.46 | 557.1 | 12.17 | 0.743 | 0.011 |
14 d | 22.56 | 2.21 | 0.44 | 0.06 | 34.4 | 3.54 | 0.930 | 0.019 | 5.51 | 0.44 | 642.6 | 13.22 | 0.657 | 0.031 |
21 d | 22.90 | 2.14 | 7.01 | 0.31 | 159.0 | 7.22 | 0.622 | 0.011 | 0.87 | 0.11 | 474.2 | 20.19 | 0.956 | 0.044 |
28 d | 24.45 | 4.12 | 0.27 | 0.07 | 19.31 | 2.87 | 0.891 | 0.021 | 13.01 | 0.90 | 892.5 | 21.36 | 0.587 | 0.048 |
35 d | 24.60 | 3.88 | 0.78 | 0.13 | 19.80 | 1.23 | 0.87 | 0.014 | 13.26 | 0.77 | 800.9 | 13.18 | 0.567 | 0.031 |
42 d | 25.12 | 2.89 | 1.79 | 0.18 | 18.54 | 1.36 | 0.77 | 0.017 | 11.13 | 0.73 | 821.6 | 25.13 | 0.557 | 0.049 |
9Ni | ||||||||||||||
Rs (Ω·cm2) | Qscale (×10−4 F·cm−2·sn−1) | Rscale (Ω·cm2) | nscale | Qdl (×10−4 F·cm−2·sn−1) | Rct (Ω·cm2) | ndl | ||||||||
Time | μ | σ | μ | σ | μ | σ | μ | σ | μ | σ | μ | σ | μ | σ |
1 h | 21.05 | 0.09 | - | - | - | - | - | - | 1.98 | 0.31 | 711.1 | 11.33 | 0.854 | 0.004 |
1 d | 23.41 | 0.28 | - | - | - | - | - | - | 7.66 | 0.63 | 834.0 | 12.58 | 0.884 | 0.006 |
7 d | 25.59 | 1.87 | 1.89 | 0.31 | 35.31 | 2.88 | 0.849 | 0.031 | 0.63 | 0.09 | 1058.1 | 27.21 | 0.731 | 0.033 |
14 d | 27.65 | 2.31 | 1.18 | 0.35 | 28.72 | 3.11 | 0.869 | 0.022 | 0.62 | 0.11 | 579.1 | 17.35 | 0.757 | 0.029 |
21 d | 28.64 | 1.87 | 1.18 | 0.24 | 24.28 | 2.55 | 0.822 | 0.034 | 0.10 | 0.04 | 458.5 | 15.22 | 0.744 | 0.019 |
28 d | 31.33 | 2.33 | 1.06 | 0.21 | 23.39 | 1.25 | 0.850 | 0.028 | 0.10 | 0.06 | 520.7 | 19.36 | 0.781 | 0.022 |
35 d | 26.19 | 1.55 | 0.99 | 0.18 | 15.18 | 2.87 | 0.883 | 0.033 | 0.12 | 0.08 | 497.5 | 13.56 | 0.780 | 0.018 |
42 d | 29.78 | 2.53 | 0.88 | 0.16 | 14.36 | 1.21 | 0.894 | 0.043 | 0.15 | 0.07 | 631.3 | 20.68 | 0.773 | 0.035 |
24Mn3Cr | ||||||||||||||
Rs (Ω·cm2) | Qscale (×10−4 F·cm−2·sn−1) | Rscale (Ω·cm2) | nscale | Qdl (×10−4 F·cm−2·sn−1) | Rct (Ω·cm2) | ndl | ||||||||
Time | μ | σ | μ | σ | μ | σ | μ | σ | μ | σ | μ | σ | μ | σ |
1 h | 30.74 | 0.18 | - | - | - | - | - | - | 4.10 | 0.11 | 162.3 | 2.69 | 0.722 | 0.005 |
1 d | 29.84 | 1.25 | - | - | - | - | - | - | 9.82 | 0.21 | 139.1 | 3.11 | 0.837 | 0.006 |
7 d | 24.84 | 1.08 | 6.56 | 0.39 | 108.2 | 8.91 | 0.871 | 0.028 | 3.61 | 0.42 | 199.9 | 8.43 | 0.941 | 0.008 |
14 d | 28.13 | 2.11 | 8.50 | 0.34 | 354.8 | 11.21 | 0.852 | 0.030 | 0.24 | 0.08 | 103.3 | 7.14 | 0.901 | 0.006 |
21 d | 24.90 | 3.81 | 7.93 | 0.25 | 394.8 | 21.22 | 0.886 | 0.041 | 0.26 | 0.07 | 134.1 | 9.78 | 0.93 | 0.011 |
28 d | 25.31 | 2.87 | 7.06 | 0.21 | 546.1 | 23.58 | 0.883 | 0.023 | 0.21 | 0.05 | 162.2 | 6.74 | 0.93 | 0.018 |
35 d | 27.42 | 6.15 | 4.65 | 0.54 | 737.8 | 28.28 | 0.892 | 0.034 | 0.18 | 0.03 | 253.1 | 11.81 | 0.88 | 0.023 |
42 d | 29.70 | 4.25 | 6.25 | 0.29 | 756.1 | 18.21 | 0.898 | 0.014 | 0.29 | 0.06 | 279.7 | 16.87 | 0.99 | 0.016 |
Elements | APIX70 | 9Ni | 24Mn3Cr | |||
---|---|---|---|---|---|---|
wt% | at% | wt% | at% | wt% | at% | |
O | 0.17 | 23.69 | 3.20 | 10.44 | 21.48 | 48.31 |
Cr | - | - | - | - | 22.52 | 15.58 |
Mn | - | - | - | - | 2.42 | 1.59 |
Ni | - | - | 19.76 | 17.56 | - | - |
Fe | 91.83 | 76.31 | 77.04 | 72.00 | 53.58 | 34.52 |
Elements | APIX70 | 9Ni | 24Mn3Cr | |||
---|---|---|---|---|---|---|
wt% | at% | wt% | at% | wt% | at% | |
O | 14.16 | 27.75 | 5.66 | 17.54 | 17.71 | 42.24 |
Cr | - | - | - | - | 29.76 | 21.84 |
Mn | - | - | - | - | 2.01 | 1.39 |
Ni | - | - | 28.77 | 24.28 | - | - |
Fe | 85.84 | 72.25 | 65.57 | 58.18 | 50.52 | 34.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.S.; Kim, S.O.; Jeong, Y.J.; Lee, S.G.; Choi, J.K.; Kim, S.J. Long-Term Corrosion Behavior of Strong and Ductile High Mn-Low Cr Steel in Acidic Aqueous Environments. Materials 2022, 15, 1746. https://doi.org/10.3390/ma15051746
Park JS, Kim SO, Jeong YJ, Lee SG, Choi JK, Kim SJ. Long-Term Corrosion Behavior of Strong and Ductile High Mn-Low Cr Steel in Acidic Aqueous Environments. Materials. 2022; 15(5):1746. https://doi.org/10.3390/ma15051746
Chicago/Turabian StylePark, Jin Sung, Si On Kim, Young Jae Jeong, Soon Gi Lee, Jong Kyo Choi, and Sung Jin Kim. 2022. "Long-Term Corrosion Behavior of Strong and Ductile High Mn-Low Cr Steel in Acidic Aqueous Environments" Materials 15, no. 5: 1746. https://doi.org/10.3390/ma15051746
APA StylePark, J. S., Kim, S. O., Jeong, Y. J., Lee, S. G., Choi, J. K., & Kim, S. J. (2022). Long-Term Corrosion Behavior of Strong and Ductile High Mn-Low Cr Steel in Acidic Aqueous Environments. Materials, 15(5), 1746. https://doi.org/10.3390/ma15051746