Sustainable Use of Sludge from Industrial Park Wastewater Treatment Plants in Manufacturing Lightweight Aggregates
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Experimental Program
2.2. Materials
2.3. Preparation of Aggregate Pellets and Sintering at Laboratory Scale
2.4. Test Methods and Data Analysis
3. Results and Discussion
3.1. Laboratory-Scale Firing
3.1.1. The First-Stage Trial Firing
3.1.2. The Second-Stage Trial Firing
3.1.3. The Third-Stage Trial Firing
3.2. Feasibility of Large-Scale Production and Application in Concrete
3.2.1. Mass-Produced Formulas
3.2.2. Mass Production Process
3.2.3. Test and Analysis of Physical Properties of the Sintered Aggregates
3.2.4. Properties of Concrete Made from the Sintered LWAs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, K.L. Assessing the Sludge from Industrial Wastewater Treatment Plants as Construction Material. Bull. Coll. Eng. Natl. Ilan Univ. 2007, 3, 1–16. [Google Scholar]
- Somayaji, S. Civil Engineering Materials; Prentice Hall: Upper Siddle River, NJ, USA, 2001. [Google Scholar]
- DIN EN13055; Lightweight Aggregates. Deutsches Institut fur Normung E.V. (DIN): Berlin, Germany, 2016; p. 54.
- Hu, S.; Wang, F. Lightweight Aggregate Concrete; Chemical Industry Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Zhang, J.; Chen, T.; Gao, X. Incorporation of self-ignited coal gangue in steam cured precast concrete. J. Clean. Prod. 2021, 292, 126004. [Google Scholar] [CrossRef]
- ACI Committee 213. Guide for Structural Lightweight-Aggregate Concrete (ACI 213R-03); American Concrete Institute: Farmington Hills, MI, USA, 2013; p. 38. [Google Scholar]
- Mindess, S.; Young, J.F. Concrete; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1981; pp. 521–532. [Google Scholar]
- Chandra, S.; Berntsson, L. Lightweight Aggregate Concrete; Noyes Publications: New York, NY, USA, 2002. [Google Scholar]
- Nguyen, H.P.; Mueller, A.; Nguyen, V.T.; Nguyen, C.T. Development and characterization of lightweight aggregate recycled from construction and demolition waste mixed with other industrial by-products. Constr. Build. Mater. 2021, 313, 125472. [Google Scholar] [CrossRef]
- Porcino, D.D.; Mauriello, F.; Bonaccorsi, L.; Tomasello, G.; Paone, E.; Malara, A. Recovery of Biomass Fly Ash and HDPE in Innovative Synthetic Lightweight Aggregates for Sustainable Geotechnical Applications. Sustainability 2020, 12, 6552. [Google Scholar] [CrossRef]
- Cheeseman, C.; Makinde, A.; Bethanis, S. Properties of lightweight aggregate produced by rapid sintering of incinerator bottom ash. Resour. Conserv. Recycl. 2005, 43, 147–162. [Google Scholar] [CrossRef]
- Wainwright, P.J.; Cresswell, D.J.F. Synthetic aggregate from combustion ashes using an innovative rotary kiln. Waste Manag. 2001, 21, 241–246. [Google Scholar]
- Chiou, I.J.; Wang, K.S.; Chen, C.H.; Lin, Y.T. Lightweight aggregate made from sewage sludge and incinerated ash. Waste Manag. 2006, 26, 1453–1461. [Google Scholar] [CrossRef]
- Chen, H.J.; Wang, S.Y.; Tang, C.W. Reuse of incineration fly ashes and reaction ashes for manufacturing lightweight aggregate. Constr. Build. Mater. 2010, 24, 46–55. [Google Scholar]
- Chang, C.; Hong, G.; Lin, H. Artificial lightweight Aggregate from different waste materials. Environ. Eng. Sci. 2016, 33, 283–289. [Google Scholar]
- Mun, K.J. Development and tests of lightweight aggregate using sewage sludge for nonstructural concrete. Constr. Build. Mater. 2007, 21, 1583–1588. [Google Scholar] [CrossRef]
- Cheeseman, C.R.; Virdi, G.S. Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash. Resour. Conserv. Recycl. 2005, 45, 18–30. [Google Scholar] [CrossRef]
- Lee, K.H.; Lee, K.G.; Lee, Y.S.; Wie, Y.M. Manufacturing and application of artificial lightweight aggregate from water treatment sludge. J. Clean. Prod. 2021, 307, 127260. [Google Scholar] [CrossRef]
- Mañosa, J.; Formosa, J.; Giro-Paloma, J.; Maldonado-Alameda, A.; Quina, M.; Chimenos, J. Valorisation of water treatment sludge for lightweight aggregate production. Constr. Build. Mater. 2021, 269, 121335. [Google Scholar] [CrossRef]
- Graziano, S.F.; Zanelli, C.; Molinari, C.; de Gennaro, B.; Giovinco, G.; Correggia, C.; Cappelletti, P.; Dondi, M. Use of screen glass and polishing sludge in waste-based expanded aggregates for resource-saving lightweight concrete. J. Clean. Prod. 2022, 332, 130089. [Google Scholar] [CrossRef]
- Tang, C.W.; Chen, H.J.; Wang, S.Y.; Spaulding, J. Production of synthetic lightweight aggregate using reservoir sediments for concrete and masonry. Cem. Concr. Compos. 2011, 33, 292–300. [Google Scholar] [CrossRef]
- Chen, H.J.; Yang, M.D.; Tang, C.W.; Wang, S.Y. Producing synthetic lightweight aggregates from reservoir sediments. Constr. Build. Mater. 2012, 28, 387–394. [Google Scholar] [CrossRef]
- Tang, C.W. Producing synthetic lightweight aggregates by treating waste TFT-LCD glass powder and reservoir sediments. Comput. Concr. 2014, 13, 325–342. [Google Scholar] [CrossRef]
- Chen, H.J.; Chang, S.N.; Tang, C.W. Application of the Taguchi Method for Optimizing the Process Parameters of Producing Lightweight Aggregates by Incorporating Tile Grinding Sludge with Reservoir Sediments. Materials 2017, 10, 1294. [Google Scholar] [CrossRef] [Green Version]
- Ayati, B.; Molineux, C.; Newport, D.; Cheeseman, C. Manufacture and performance of lightweight aggregate from waste drill cuttings. J. Clean. Prod. 2019, 208, 252–260. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Cheng, S.; Ou, K.; Kuo, P.; Chung, T.; Xie, X. Effect of calcium compounds on lightweight aggregates prepared by firing a mixture of coal fly ash and waste glass. Ceram. Int. 2017, 43, 15573–15579. [Google Scholar] [CrossRef]
- Moreno-Maroto, J.M.; Gonzalez-Corrochano, B.; Alonso-Azcarate, J.; Rodríguez, L.; Acosta, A. Development of lightweight aggregates from stone cutting sludge, plastic wastes and sepiolite rejections for agricultural and environmental purposes. J. Environ. Manag. 2017, 200, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Martínez-García, C.; Andreola, F.; Lancellotti, I.; Farías, R.D.; Cotes-Palomino, M.T.; Barbieri, L. Cleaner Design and Production of Lightweight Aggregates (LWAs) to Use in Agronomic Application. Appl. Sci. 2021, 11, 800. [Google Scholar] [CrossRef]
- Randall, M.; German, P.S.; Seong, J.P. Review: Liquid phase sintering. J. Mater. Sci. 2009, 44, 1–39. [Google Scholar]
- Bush, A.L.; Bryan, D.P.; Hack, D.R. Lightweight aggregates. In Industrials, Mineral & Rocks, 7th ed.; Society for Mining, Metallurgy, and Exploration. Inc.: Littleton, CO, USA, 2006; pp. 181–194. [Google Scholar]
- González-Corrochano, B.; Alonso-Azcárate, J.; Rodas, M.; Barrenechea, J.F.; Luque, F.J. Microstructure and mineralogy of lightweight aggregates manufactured from mining and industrial wastes. Constr. Build. Mater. 2011, 25, 3591–3602. [Google Scholar] [CrossRef] [Green Version]
- Riley, C.M. Relation of chemical properties to the bloating of clays. J. Am. Ceram. Soc. 1951, 30, 121–128. [Google Scholar] [CrossRef]
- Moreno-Maroto, J.M.; Cobo-Ceacero, C.J.; Uceda-Rodríguez, M.; Cotes-Palomino, T.; Martínez García, C.; Alonso-Azcárate, J. Unraveling the expansion mechanism in lightweight aggregates: Demonstrating that bloating barely requires gas. Construct. Build. Mater. 2020, 247, 3–5. [Google Scholar] [CrossRef]
- Balapour, M.; Thway, T.; Rao, R.; Moser, N.; Garboczi, E.J. A thermodynamics-guided framework to design lightweight aggregate from waste coal combustion fly ash. Resour. Conserv. Recycl. 2022, 178, 106050. [Google Scholar] [CrossRef]
- Kim, Y.T.; Ryu, Y.; Jeon, H.; Lee, K.G.; Kang, S.G.; Kim, J.H.; Jang, C.S.; Lee, S.G. Study of the plasticity of lightweight aggregate green bodies including bottom ash. J. Ceram. Process. Res. 2010, 11, 225–232. [Google Scholar]
- González-Corrochano, B.; Azcárate, J.A.; Rodas, M. Chemical partitioning in lightweight aggregates manufactured from washing aggregate sludge, fly ash and used motor oil. J. Environ. Manag. 2012, 109, 43–53. [Google Scholar] [CrossRef]
- González-Corrochano, B.; Alonso-Azcárate, J.; Rodas, M. Characterization of lightweight aggregates manufactured from washing aggregate sludge and fly ash. Resour. Conserv. Recycl. 2009, 53, 571–581. [Google Scholar] [CrossRef]
- Suchorab, Z.; Barnat-Hunek, D.; Franus, M.; Łagód, G. Mechanical and physical properties of hydrophobized lightweight aggregate concrete with sewage sludge. Materials 2016, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- CNS 488; Method of Test for Specific Gravity and Absorption of Coarse Aggregate, Bureau of Standards. Metrology & Inspection, M.O.E.A., R.O.C.: Taipei, Taiwan, 1993.
- CNS 1163; Method of Test for Bulk Density and Voids in Aggregate e, Bureau of Standards. Metrology & Inspection, M.O.E.A., R.O.C.: Taipei, Taiwan, 2008.
- CNS 14779; Method of Test for the Particle Cylindrical Crushing Strength of Lightweight Coarse Aggregates, Bureau of Standards. Metrology & Inspection, M.O.E.A., R.O.C.: Taipei, Taiwan, 2008.
- Han, M.C.; Han, D.; Shin, J.K. Use of bottom ash and stone dust to make light-weight aggregate. Constr. Build. Mater. 2015, 99, 192–199. [Google Scholar] [CrossRef]
- Souza, M.M.; Anjos, M.A.S.; Sá, M.V.V.A.; Souza, N.S.L. Developing and classifying lightweight aggregates from sewage sludge and rice husk ash. Case Stud. Constr. Mater. 2020, 12, e00340. [Google Scholar] [CrossRef]
- Liu, M.; Wang, C.; Bai, Y.; Xu, G. Effects of sintering temperature on the characteristics of lightweight aggregate made from sewage sludge and river sediment. J. Alloys Compd. 2018, 748, 522–527. [Google Scholar] [CrossRef]
- González-Corrochano, B.; Alonso-Azcárate, J.; Rodríguez, L.; Lorenzo, A.P.; Torío, M.F.; Ramos, J.J.T.; Corvinos, M.D.; Muro, C. Valorization of washing aggregate sludge and sewage sludge for lightweight aggregates production. Construct. Build. Mater. 2016, 116, 252–262. [Google Scholar] [CrossRef]
- CNS 3691; Lightweight Aggregates for Structural Concrete, Bureau of Standards. Metrology & Inspection, M.O.E.A., R.O.C.: Taipei, Taiwan, 1998.
- CNS 14826; Lightweight Aggregates for Insulating Concrete, Bureau of Standards. Metrology & Inspection, M.O.E.A., R.O.C.: Taipei, Taiwan, 2004.
- Li, B.; Jian, S.; Zhu, J.; Gao, X.; Gao, W. Effect of sintering temperature on lightweight aggregates manufacturing from copper contaminated soil. Ceram. Int. 2021, 47, 31319–31328. [Google Scholar] [CrossRef]
- GB/T 17431; Chinese National Standard; Lightweight aggregates and Its Test Methods—Part 1: Lightweight Aggregates. Standardization Administration of China: Beijing, China, 2010.
Aggregate Type | Particle Diameter (mm) | Bulk Density (kg/m3) | |
---|---|---|---|
Coarse LWA | ≥5 | <1000 | |
Fine LWA | Natural aggregate | <5 | <1000 |
Artificial aggregate | <5 | <1200 |
Source | Type | Physical Properties | |||
---|---|---|---|---|---|
Bulk Density (g/cm3) | Particle Density (g/cm3) | Porosity (%) | Water Absorption (%) | ||
Natural | Pumice | 0.34–0.63 | 0.35–1.15 | 85 | up to 50 |
Lava | 0.75–1.4 | 1.8–2.8 | 40 | 10 | |
Artificial | Perlite | 0.04–0.15 | 0.1–0.3 | 95 | ≒0 |
Vermiculite | 0.06–0.17 | 0.1–0.35 | 90 | ≒0 | |
Expanded clay | 0.3–0.9 | 0.6–1.8 | 75 | 8–20 | |
Expanded shale | 0.45–0.9 | 0.8–1.8 | 70 | 5–10 | |
Expanded slag | 0.5–0.85 | 1.0–2.0 | 46–60 | 20–35 | |
Organic foam balls | 0.02 | 0.04 | 99 | ≒0 |
Physical Property | Reservoir Sediments | Sludge |
---|---|---|
D50 (mm) | 0.004 | 0.11 |
Plastic index (%) | 12 | 4 |
Specific gravity | 2.75 | 1.74 |
Item | Reservoir Sediments | Sludge |
---|---|---|
SiO2 (%) | 62.1 | 18.1 |
Al2O3 (%) | 6.27 | 19.2 |
CaO (%) | 1.16 | 4.03 |
MgO (%) | 1.73 | 0.92 |
K2O (%) | 0.0066 | 0.0686 |
Na2O (%) | 3.42 | 0.13 |
Fe2O3 (%) | 6.43 | 6.15 |
Moisture (%) | 7.91 | 21.09 |
Ash (%) | 87.66 | 33.96 |
Combustible (%) | 4.43 | 44.95 |
Organic matter | 2.6 | 41.9 |
SO4 (%) | 0.05 | 0.28 |
Cl− (%) | 0.04 | 0.07 |
Formula Number | Proportion of Mixture (% wt.) | Granulation Feasibility | |
---|---|---|---|
Sludge | Reservoir Sediments | ||
W10 | 10 | 90 | Feasible |
W30 | 30 | 70 | Feasible |
W50 | 50 | 50 | Feasible |
W70 | 70 | 30 | Fail |
Formula Number | Sintering Temperature Range | Softening Temperature |
---|---|---|
W30 | 1075–1225 °C | 1225 °C |
W50 | 1075–1200 °C | 1200 °C |
Formula Number | Preheating Phase | Sintering Phase | Particle Density (g/cm3) | Bloating Index (%) | ||
---|---|---|---|---|---|---|
Temperature (°C) | Soaking Time (min) | Temperature (°C) | Soaking Time (min) | |||
W30 | 500 | 5 | 1225 | 10 | 0.61 | 225.75 |
7 | 0.64 | 213.84 | ||||
10 | 0.98 | 140.64 | ||||
W50 | 5 | 1200 | 0.82 | 152.04 | ||
7 | 0.85 | 145.21 | ||||
10 | 1.08 | 128.08 |
Sample No. | Preheating Phase | Sintering Phase | LOI (%) | Water Absorption (%) | Particle Density (g/cm3) | Bloating Index (%) | ||
---|---|---|---|---|---|---|---|---|
Temp. (°C) | Soaking Time (min) | Temp. (°C) | Soaking Time (min) | |||||
W10-1 | 500 | 5 | 1250 | 5 | 11.2 | 19.4 | 0.47 | 320 |
W10-2 | 10 | 11.2 | 16.2 | 0.42 | 361 | |||
W10-3 | 15 | 10.4 | 13.2 | 0.41 | 374 | |||
W10-4 | 15 | 5 | 9.8 | 1.8 | 1.12 | 136 | ||
W10-5 | 10 | 10.9 | 1.3 | 1.06 | 144 | |||
W10-6 | 15 | 10.0 | 1.2 | 0.75 | 202 | |||
W30-1 | 500 | 5 | 1225 | 5 | 18.8 | 20.3 | 0.76 | 181 |
W30-2 | 10 | 19.1 | 16.7 | 0.61 | 226 | |||
W30-3 | 15 | 18.6 | 12.8 | 0.52 | 262 | |||
W30-4 | 15 | 5 | 18.5 | 6.7 | 1.07 | 128 | ||
W30-5 | 10 | 18.5 | 3.0 | 0.98 | 141 | |||
W30-6 | 15 | 17.9 | 2.6 | 0.80 | 171 | |||
W50-1 | 500 | 5 | 1200 | 5 | 28.2 | 17.0 | 0.93 | 133 |
W50-2 | 10 | 28.1 | 12.0 | 0.85 | 145 | |||
W50-3 | 15 | 28.9 | 10.4 | 0.81 | 154 | |||
W50-4 | 15 | 5 | 28.5 | 9.2 | 1.63 | 76 | ||
W50-5 | 10 | 28.1 | 7.0 | 1.20 | 103 | |||
W50-6 | 15 | 28.6 | 2.0 | 0.88 | 140 |
Formula Number | Proportion of Mixture (% wt.) | Sludge (Dry) (kg) | Clay (Dry) (kg) | Sludge (Wet) (kg) | Sediments (Wet) (kg) | Mixing Amount (kg) | |
---|---|---|---|---|---|---|---|
Sludge | Sediments | ||||||
W0 | 0 | 100 | 0 | 3518 | 0 | 3820 | 3820 |
W30 | 30 | 70 | 1005 | 2345 | 1273 | 2547 | 3820 |
W40 | 40 | 60 | 1318 | 1979 | 1671 | 2149 | 3820 |
W50 | 50 | 50 | 1623 | 1623 | 2056 | 1764 | 3820 |
Total | 3946 | 9465 | 5000 | 10,280 | 15,280 |
Rotary Kiln Operation Record | |||||
---|---|---|---|---|---|
Time When Entering the Kiln | Exhaust Volume | Preheating Section | Sintering Section | The Time Out of the Kiln | |
Number of Gates | Rotating Speed (RPM) | Rotating Speed (RPM) | Temperature (°C) | ||
08:05 | 4 | 3.5 | 1 | 1010 | 08:55 |
Property | Quality Requirements | Code |
---|---|---|
Dry loose bulk density | <880 kg/m3 | CNS 3691 and CNS 14826 |
Water absorption | <15% | - |
Crushing strength | The difference between the maximum value and the minimum value is less than 15% of the average value. | CNS 14779 |
Formula Number | Property | ||
---|---|---|---|
Water Absorption (%) | Dry Loose Bulk Density (kg/m3) | Crushing Strength (MPa) | |
W0 | 4.0 ± 0.2 | 812 ± 6 | 10.21 ± 0.21 |
W30 | 14.2 ± 0.1 | 753 ± 8 | 2.90 ± 0.14 |
W40 | 26.7 ± 1.2 | 662 ± 4 | 1.29 ± 0.01 |
W50 | 26.9 ± 0.3 | 634 ± 4 | 1.38 ± 0.01 |
Formula Number | Heavy Metals | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cu (mg/L) | Cd (mg/L) | Cr (mg/L) | Pb (mg/L) | As (mg/L) | Hg (mg/L) | Se (mg/L) | Cr6+ (mg/L) | Ba (mg/L) | |
Sludge | 0.109 | ND | <0.020 | ND | ND | ND | <0.100 | <0.10 | 0.328 |
Clay | <0.020 | ND | <0.020 | <0.040 | ND | ND | <0.100 | <1.00 | 0.725 |
W30 | <0.020 | ND | <0.020 | <0.040 | ND | ND | <0.100 | <0.10 | 0.321 |
W40 | 0.139 | ND | <0.020 | 0.114 | 0.272 | ND | <0.100 | <1.00 | 0.191 |
W50 | 0.032 | ND | <0.020 | <0.040 | 0.348 | ND | <0.100 | <1.00 | 0.267 |
Specification value * | 15 | 1 | 5 | 5 | 5 | 0.2 | 1 | 2.5 | 100 |
Water/Cement (W/C) | Water (kg/m3) | Cement (kg/m3) | Fine Aggregate (kg/m3) | LWA (kg/m3) | Unit Weight (kg/m3) |
---|---|---|---|---|---|
0.4 | 202 | 504 | 504 | 777 | 1987 |
Sample Group | 28-Day Compressive Strength (MPa) | Strength Grade (MPa) | Specification Value (MPa) |
---|---|---|---|
W30 | 31 | 20 | 20 |
Cement mortar | 61 | — | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, C.-W.; Cheng, C.-K. Sustainable Use of Sludge from Industrial Park Wastewater Treatment Plants in Manufacturing Lightweight Aggregates. Materials 2022, 15, 1785. https://doi.org/10.3390/ma15051785
Tang C-W, Cheng C-K. Sustainable Use of Sludge from Industrial Park Wastewater Treatment Plants in Manufacturing Lightweight Aggregates. Materials. 2022; 15(5):1785. https://doi.org/10.3390/ma15051785
Chicago/Turabian StyleTang, Chao-Wei, and Chiu-Kuei Cheng. 2022. "Sustainable Use of Sludge from Industrial Park Wastewater Treatment Plants in Manufacturing Lightweight Aggregates" Materials 15, no. 5: 1785. https://doi.org/10.3390/ma15051785
APA StyleTang, C. -W., & Cheng, C. -K. (2022). Sustainable Use of Sludge from Industrial Park Wastewater Treatment Plants in Manufacturing Lightweight Aggregates. Materials, 15(5), 1785. https://doi.org/10.3390/ma15051785