Compression Behaviors and Mechanical Properties of Modified Face-Centered Cubic Lattice Structures under Quasi-Static and High-Speed Loading
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design Strategies and Geometric Configurations
2.2. Material Tests and Simulation Parameters
2.3. Quasi-Static Compression Experiments
3. Results and Discussions
3.1. 2D Modified FCC Lattices
3.2. 3D Modified FCC Lattices
3.3. Dynamic Plateau Stress Prediction Model
3.4. Energy Absorption Properties
4. Discussion
- Under high-speed loading, the global buckling deformation mode of the simple cubic lattice structure and MFCC lattice structure with a larger length coefficient is restrained.
- The energy absorption and load-bearing capacity of modified FCC lattice is particularly influenced by the length coefficient m. At appropriate m, the specific energy absorption of MFCC lattice can be improved 49.3% over the conventional FCC lattice under high-speed impact loading.
- The empirical formula was provided, which can accurately predict the plateau stress for the 3D modified FCC lattice under dynamic loading.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Momeni, K.; Mofidian, S.M.M.; Bardaweel, H. Systematic Design of High-Strength Multicomponent Metamaterials. Mater. Des. 2019, 183, 1–10. [Google Scholar] [CrossRef]
- Xiao, R.; Li, X.; Jia, H.; Surjadi, J.U.; Li, J.; Lin, W.; Gao, L.; Chirarattananon, P.; Lu, Y. 3D Printing of Dual Phase-Strengthened Microlattices for Lightweight Micro Aerial Vehicles. Mater. Des. 2021, 206, 109767. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, J.; Liang, H.; Jiang, Z.; Wu, L. Mechanical Metamaterials Associated with Stiffness, Rigidity and Compressibility: A Brief Review. Prog. Mater. Sci. 2018, 94, 114–173. [Google Scholar] [CrossRef]
- Niknam, H.; Akbarzadeh, A.H. Graded Lattice Structures: Simultaneous Enhancement in Stiffness and Energy Absorption. Mater. Des. 2020, 196, 109129. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, S.; Yu, T.X.; Xu, J. Crushing Resistance and Energy Absorption of Pomelo Peel Inspired Hierarchical Honeycomb. Int. J. Impact Eng. 2019, 125, 163–172. [Google Scholar] [CrossRef]
- Qiu, X.M.; Zhang, J.; Yu, T.X. Collapse of Periodic Planar Lattices under Uniaxial Compression, Part II: Dynamic Crushing Based on Finite Element Simulation. Int. J. Impact Eng. 2009, 36, 1231–1241. [Google Scholar] [CrossRef]
- Yuan, S.; Chua, C.K.; Zhou, K. 3D-Printed Mechanical Metamaterials with High Energy Absorption. Adv. Mater. Technol. 2019, 4, 1–9. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, H.; Zhou, Z.; Zeng, H.; Zhang, X.; Yang, J.; Lei, H.; Han, F. Energy Absorption Diagram Characteristic of Metallic Self-Supporting 3D Lattices Fabricated by Additive Manufacturing and Design Method of Energy Absorption Structure. Int. J. Solids. Struct. 2021, 226–227, 111082. [Google Scholar] [CrossRef]
- Wang, Z. Recent Advances in Novel Metallic Honeycomb Structure. Compos. Part B-Eng. 2019, 166, 731–741. [Google Scholar] [CrossRef]
- Li, X.; Gao, L.; Zhou, W.; Wang, Y.; Lu, Y. Novel 2D Metamaterials with Negative Poisson’s Ratio and Negative Thermal Expansion. Extreme. Mech. Lett. 2019, 30, 100498. [Google Scholar] [CrossRef]
- Qi, C.; Jiang, F.; Remennikov, A.; Pei, L.Z.; Liu, J.; Wang, J.S.; Liao, X.W.; Yang, S. Quasi-Static Crushing Behavior of Novel Re-Entrant Circular Auxetic Honeycombs. Compos. Part B-Eng. 2020, 197, 108117. [Google Scholar] [CrossRef]
- Xue, R.; Cui, X.; Zhang, P.; Liu, K.; Li, Y.; Wu, W.; Liao, H. Mechanical Design and Energy Absorption Performances of Novel Dual Scale Hybrid Plate-Lattice Mechanical Metamaterials. Extreme. Mech. Lett. 2020, 40, 100918. [Google Scholar] [CrossRef]
- Hu, L.L.; Wu, Z.J.; Fu, M.H. Mechanical Behavior of Anti-Trichiral Honeycombs under Lateral Crushing. Int. J. Mech. Sci. 2018, 140, 537–546. [Google Scholar] [CrossRef]
- Fu, M.H.; Xu, O.T.; Hu, L.L.; Yu, T.X. Nonlinear Shear Modulus of Re-Entrant Hexagonal Honeycombs under Large Deformation. Int. J. Solids. Struct. 2016, 80, 284–296. [Google Scholar] [CrossRef]
- Wang, P.; Bian, Y.; Yang, F.; Fan, H.; Zheng, B. Mechanical Properties and Energy Absorption of FCC Lattice Structures with Different Orientation Angles. Acta Mech. 2020, 231, 3129–3144. [Google Scholar] [CrossRef]
- Bonatti, C.; Mohr, D. Large Deformation Response of Additively-Manufactured FCC Metamaterials: From Octet Truss Lattices towards Continuous Shell Mesostructures. Int. J. Plasticity 2017, 92, 122–147. [Google Scholar] [CrossRef] [Green Version]
- Al-Saedi, D.S.J.; Masood, S.H.; Faizan-Ur-Rab, M.; Alomarah, A.; Ponnusamy, P. Mechanical Properties and Energy Absorption Capability of Functionally Graded F2BCC Lattice Fabricated by SLM. Mater. Des. 2018, 144, 32–44. [Google Scholar] [CrossRef]
- Cao, X.; Duan, S.; Liang, J.; Wen, W.; Fang, D. Mechanical Properties of an Improved 3D-Printed Rhombic Dodecahedron Stainless Steel Lattice Structure of Variable Cross Section. Int. J. Mech. Sci. 2018, 145, 53–63. [Google Scholar] [CrossRef]
- Guo, W.; Huang, Y.; Ritchie, R.O.; Yin, S. Dissipative Dual-Phase Mechanical Metamaterial Composites via Architectural Design. Extreme. Mech. Lett. 2021, 48, 101442. [Google Scholar] [CrossRef]
- Zhang, E.T.; Liu, H.; Ng, B.F. Novel Arc-Shaped Ligaments to Enhance Energy Absorption Capabilities of Re-Entrant Anti-Trichiral Structures. Compos. Part B-Eng. 2021, 227, 109366. [Google Scholar] [CrossRef]
- Tancogne-Dejean, T.; Spierings, A.B.; Mohr, D. Additively-Manufactured Metallic Micro-Lattice Materials for High Specific Energy Absorption under Static and Dynamic Loading. Acta Mater. 2016, 116, 14–28. [Google Scholar] [CrossRef]
- Lei, H.; Li, C.; Meng, J.; Zhou, H.; Liu, Y.; Zhang, X.; Wang, P.; Fang, D. Evaluation of Compressive Properties of SLM-Fabricated Multi-Layer Lattice Structures by Experimental Test and μ-CT-Based Finite Element Analysis. Mater. Des. 2019, 169, 107685. [Google Scholar] [CrossRef]
- Zhao, X.; Gao, Q.; Wang, L.; Yu, Q.; Ma, Z.D. Dynamic Crushing of Double-Arrowed Auxetic Structure under Impact Loading. Mater. Des. 2018, 160, 527–537. [Google Scholar] [CrossRef]
- Wang, P.; Yang, F.; Ru, D.; Zheng, B.; Fan, H. Additive-manufactured hierarchical multi-circular lattice structures for energy absorption application. Mater. Des. 2021, 210, 110116. [Google Scholar] [CrossRef]
- Cao, X.; Xiao, D.; Li, Y.; Wen, W.; Zhao, T.; Chen, Z.; Jiang, Y.; Fang, D. Dynamic Compressive Behavior of a Modified Additively Manufactured Rhombic Dodecahedron 316L Stainless Steel Lattice Structure. Thin-Walled Struct. 2020, 148, 106586. [Google Scholar] [CrossRef]
- Zheng, Z.; Yu, J.; Li, J. Dynamic Crushing of 2D Cellular Structures: A Finite Element Study. Int. J. Impact Eng. 2005, 32, 650–664. [Google Scholar] [CrossRef]
- Ruan, D.; Lu, G.; Wang, B.; Yu, T.X. In-Plane Dynamic Crushing of Honeycombs-a Finite Element Study. Int. J. Impact Eng 2003, 28, 161–182. [Google Scholar] [CrossRef]
- Hu, L.; You, F.; Yu, T. Effect of Cell-Wall Angle on the in-Plane Crushing Behaviour of Hexagonal Honeycombs. Mater. Des. 2013, 46, 511–523. [Google Scholar] [CrossRef]
- Wang, P.; Yang, F.; Li, P.; Zheng, B.; Fan, H. Design and Additive Manufacturing of a Modified Face-Centered Cubic Lattice with Enhanced Energy Absorption Capability. Extreme. Mech. Lett. 2021, 47, 101358. [Google Scholar] [CrossRef]
- Novak, N.; Vesenjak, M.; Tanaka, S.; Hokamoto, K.; Ren, Z. Compressive behaviour of chiral auxetic cellular structures at different strain rates. Int. J. Impact Eng. 2020, 141, 103566. [Google Scholar] [CrossRef]
- Reid, S.R.; Peng, C. Dynamic uniaxial crushing of wood. Int. J. Impact Eng. 1997, 19, 531–570. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure & Properties; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Wang, P.; Yang, F.; Lu, G.; Bian, Y.; Zhang, S.; Zheng, B.; Fan, H. Anisotropic compression behaviors of bio-inspired modified body-centered cubic lattices validated by additive manufacturing. Compos. Part B-Eng. 2022, 234, 109724. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, G.; You, Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review. Compos. Part B-Eng. 2020, 201, 108340. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Yang, F.; Zhao, J. Compression Behaviors and Mechanical Properties of Modified Face-Centered Cubic Lattice Structures under Quasi-Static and High-Speed Loading. Materials 2022, 15, 1949. https://doi.org/10.3390/ma15051949
Wang P, Yang F, Zhao J. Compression Behaviors and Mechanical Properties of Modified Face-Centered Cubic Lattice Structures under Quasi-Static and High-Speed Loading. Materials. 2022; 15(5):1949. https://doi.org/10.3390/ma15051949
Chicago/Turabian StyleWang, Peng, Fan Yang, and Jinfeng Zhao. 2022. "Compression Behaviors and Mechanical Properties of Modified Face-Centered Cubic Lattice Structures under Quasi-Static and High-Speed Loading" Materials 15, no. 5: 1949. https://doi.org/10.3390/ma15051949
APA StyleWang, P., Yang, F., & Zhao, J. (2022). Compression Behaviors and Mechanical Properties of Modified Face-Centered Cubic Lattice Structures under Quasi-Static and High-Speed Loading. Materials, 15(5), 1949. https://doi.org/10.3390/ma15051949