Reliability Analysis of Critical Systems in A Fuel Booster Pump Using Advanced Simulation Techniques
Abstract
:1. Introduction
2. Methodology
3. Reliability Simulation
3.1. LHS
3.2. Finite Element Simulation
3.2.1. Local Conditions of the Key Components
3.2.2. Sealing Bolt
3.2.3. Spline Shaft
3.2.4. Graphite Ring
3.2.5. Inducer
4. Results and Discussions
4.1. Prediction of Life Distributions
4.2. Sensitivity Analysis
- (1)
- Sealing bolt
- (2)
- Spline shaft
- (3)
- Graphite ring
- (4)
- Inducer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fimeche, H.H. Reliability and efficiency in centrifugal pumps-sciencedirect. Meet. Pump Users Needs 1991, 80, 499–507. [Google Scholar]
- Monti, S.; Guagliano, M. Failure analysis of an involute spline coupling of an overhead bridge crane. Eng. Fail. Anal. 2019, 104, 321–330. [Google Scholar] [CrossRef]
- Hyde, T.R.; Leen, S.B.; Mccoll, I.R. A simplified fretting test methodology for complex shaft couplings. Fatigue Fract. Eng. Mater. Struct. 2010, 28, 1047–1067. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, Y.; Sun, X.; Xu, H.; Zhang, L. Experimental investigation on the effect of misalignment on the wear failure for spline couplings. Eng. Fail. Anal. 2021, 131, 105–755. [Google Scholar] [CrossRef]
- Cura, F.; Mura, A.; Psdus, B. Recent advances in spline couplings reliability. Procedia Struct. Integr. 2019, 19, 328–335. [Google Scholar] [CrossRef]
- Wang, H.; Qin, S.; Tan, Y. Study on fatigue reliability of high-strength bolt joint in corrosion environment. In Proceedings of the International Conference on Chemical, Material and Food Engineering (CMFE-2015), Guangzhou, China, July 2015. [Google Scholar] [CrossRef] [Green Version]
- Jawwad, A.K.A.; Alshabatat, N.; Mahdi, M. The effects of joint design, bolting procedure and load eccentricity on fatigue failure characteristics of high-strength steel bolts. Eng. Fail. Anal. 2021, 122, 105–279. [Google Scholar]
- Yang, L.; Yang, B.; Yang, G.; Xiao, S.; Jiang, S. Research on factors affecting competitive failure between loosening and fatigue of bolt under combined excitation. J. Constr. Steel Res. 2022, 189, 107–110. [Google Scholar] [CrossRef]
- Yu, Q.; Zhou, H.; Yu, X. High-Temperature Low Cycle Fatigue Life Prediction and Experimental Research of Pre-Tightened Bolts. Metals Metall. J. 2018, 8, 828. [Google Scholar] [CrossRef] [Green Version]
- Shiels, S. Failure of mechanical seals in centrifugal pumps. World Pumps 2002, 429, 20–22. [Google Scholar] [CrossRef]
- Wang, J.; Qian, J.; Yuan, X.; Wang, S. Experimental study on friction and wear behaviour of amorphous carbon coatings for mechanical seals in cryogenic environment. Appl. Surf. Sci. 2012, 258, 9531–9535. [Google Scholar] [CrossRef]
- Hirani, H.; Goilkar, S.S. Formation of transfer layer and its effect on friction and wear of carbon–graphite face seal under dry, water and steam environments. Wear 2009, 266, 1141–1154. [Google Scholar] [CrossRef]
- Thai, Q.; Lee, C. The cavitation behavior with short length blades in centrifugal pump. J. Mech. Sci. Technol. 2010, 24, 2007–2016. [Google Scholar] [CrossRef]
- Yu, R.; Liu, J. Failure analysis of centrifugal pump impeller. Eng. Fail. Anal. 2018, 92, 343–349. [Google Scholar] [CrossRef]
- Zhu, S.P.; Foletti, S.; Beretta, S. Probabilistic framework for multiaxial LCF assessment under material variability. Int. J. Fatigue 2017, 103, 371–385. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Chau-Dinh, T.; Zi, G.; Lee, T.H.; Kong, J.S. Probabilistic fatigue integrity assessment in multiple crack growth analysis associated with equivalent initial flaw and material variability. Eng. Fract. Mech. 2016, 156, 182–196. [Google Scholar] [CrossRef]
- Grell, W.A.; Laz, P.J. Probabilistic fatigue life prediction using AFGROW and accounting for material variability. Int. J. Fatigue 2009, 32, 1042–1049. [Google Scholar] [CrossRef]
- Zhu, S.P.; Huang, H.Z.; Ontiveros, V.; He, L.P.; Modarres, M. Probabilistic Low Cycle Fatigue Life Prediction Using an Energy-Based Damage Parameter and Accounting for Model Uncertainty. Int. J. Damage Mech. 2012, 21, 1128–1153. [Google Scholar] [CrossRef]
- Sankararaman, S.; Ling, Y.; Mahadevan, S. Uncertainty quantification and model validation of fatigue crack growth prediction. Eng. Fract. Mech. 2011, 78, 1487–1504. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, G.; Zhou, S.; Ouyang, L. Implementation of a novel Six Sigma multi-objective robustness optimization method based on the improved response surface model for bumper system design. Thin-Walled Struct. 2021, 167, 108–257. [Google Scholar] [CrossRef]
- Niu, X.; Wang, R.; Liao., D.; Zhu, S.; Zhang, X.; Keshtegar, B. Probabilistic modeling of uncertainties in fatigue reliability analysis of turbine bladed disks. Int. J. Fatigue 2021, 142, 105912. [Google Scholar] [CrossRef]
- Yazdi, M.; Soltanali, H. Knowledge acquisition development in failure diagnosis analysis as an interactive approach. Int. J. Interact. Des. Manuf. (IJIDeM) 2019, 13, 193–210. [Google Scholar] [CrossRef] [Green Version]
- Soltanali, H.; Garmabaki, A.H.S.; Thaduri, A.; Parida, A.; Kumar, U.; Rohani, A. Sustainable production process: An application of reliability, availability, and maintainability methodologies in automotive manufacturing. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2019, 233, 682–697. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Wang, A.; Bai, G.; Wei, C.; Fei, C. Substructure-based distributed collaborative probabilistic analysis method for low-cycle fatigue damage assessment of turbine blade–disk. Aerosp. Sci. Technol. 2018, 79, 636–646. [Google Scholar] [CrossRef]
- Su, Y.T.; Fu, G.; Wan, B.; Zhou, W.; Wang, X. Fatigue reliability design for metal dual inline packages under random. Microelectron. Reliab. 2019, 100–101, 113–404. [Google Scholar]
- Aghababaei, R.; Zhao, K. Micromechanics of material detachment during adhesive wear: A numerical assessment of Archard wear model. Wear 2021, 1–2, 203–739. [Google Scholar] [CrossRef]
- Xue, X.; Wang, S.; Li, B. Modification methodology of fretting wear in involute spline. Wear 2016, 368–369, 435–444. [Google Scholar] [CrossRef]
- Coria, I.; Abasolo, M.; Aguirrebeitia, J.; Heras, I. Study of bolt load scatter due to tightening sequence. Int. J. Press. Vessel. Pip. 2020, 182, 1040–1054. [Google Scholar] [CrossRef]
- Zhao, L.; Shan, M.; Liu, F.; Zhang, J. A probabilistic model for strength analysis of composite double-lap single-bolt joints. Compos. Struct. 2016, 161, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Zhang, Y.; Xu, D.K.; Chen, X. Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 Elev. temperature of 650 °C. Mater. Sci. Eng. A 2016, 655, 175–182. [Google Scholar] [CrossRef]
- Pape, J.A.; Neu, R.W. A comparative study of the fretting fatigue behavior of 4340 steel and PH 13–8 Mo stainless steel. Int. J. Fatigue 2007, 29, 2219–2229. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Mamun, M.S.; Mirza, O.; Mashiri, F. Behaviour of blind bolt shear connectors subjected to static and fatigue loading. Eng. Struct. 2020, 214, 110–584. [Google Scholar] [CrossRef]
- Beebe, R.S. Pump Performance and the Effect of Wear. In Predicitive Maintenance of Pumps Using Condition Monitoring; Elsevier: Amsterdam, The Netherlands, 2004; pp. 21–34. [Google Scholar]
- Deulgaonka, V.; Pawar, K.; Kudle, P.; Raverkar, A.; Raut, A. Failure analysis of fuel pumps used for diesel engines in transport utility vehicles. Eng. Fail. Anal. 2019, 105, 1262–1272. [Google Scholar] [CrossRef]
- Jiao, X.; Jing, B.; Huang, Y.; Li, J.; Xu, G. Research on fault diagnosis of airborne fuel pump based on emd and probabilistic neural networks. Microelectron. Reliab. 2017, 75, 296–308. [Google Scholar] [CrossRef]
- MIL-P-5238C; Pump, Centrifugal, Fuel Booster, Aircraft, General Specification for. American Military Specification, 1979.
- GB/T 5782-2016; Hexagon Head Bolts. Standards Press of China: Beijing, China, 2016.
- GB/T6172.1-2016; Hexagon Thin Nuts. Standards Press of China: Beijing, China, 2016.
- GB/T 34781-1995; Standard for Cylindrical Straight Involute Splines. Standards Press of China: Beijing, China, 1995.
- Otter, C.D.; Maljaars, J. Preload loss of stainless steel bolts in aluminium plated slip resistant connections. Thin-Walled Struct. 2020, 157, 106984. [Google Scholar] [CrossRef]
- Cazin, D.; Braut, S.; Boi, E.; Iguli, R. Low cycle fatigue life prediction of the demining tiller tool. Eng. Fail. Anal. 2020, 111, 104–457. [Google Scholar] [CrossRef]
- Li, W.; Wang, Q.; Qu, H.; Xiang, Y.; Li, Z. Mechanical properties of HRB400E/316L stainless steel clad rebar under low-cycle fatigue. Structures 2022, 38, 292–305. [Google Scholar] [CrossRef]
- Barsoum, I.; Khan, F.; Barsoum, Z. Analysis of the torsional strength of hardened splined shafts. Mater. Design. 2014, 54, 130–136. [Google Scholar] [CrossRef]
- Liu, S.; Liu, C.; Hu, Y.; Gao, S.; Wang, Y.; Zhang, H. Fatigue life assessment of centrifugal compressor impeller based on fea. Eng. Anal. 2016, 60, 383–390. [Google Scholar] [CrossRef]
Key Components | Function | Failure | PoF Model |
---|---|---|---|
Sealing bolt | Tighten and seal | Fatigue | Basquin model |
Spline shaft | Transmission torque | Wear | Fretting wear model |
Fatigue | Basquin model | ||
Graphite ring | Mechanical seal | Wear | Archard wear model |
Inducer | Guide and pressurize the fuel | Fatigue | Basquin model |
No. | Parameter | Unit | Distribution | Mean | CoV |
---|---|---|---|---|---|
1 | Fatigue strength coefficient σf1′ | MPa | Normal | 1.57 × 103 [21] | 0.05 [21] |
2 | Fatigue strength index b1 | / | Normal | −0.10 [21] | 0.05 [21] |
3 | Preload F | N | Normal | 6.04 × 104 [28] | 8.33 × 10−2 [28] |
4 | Nominal diameter d | mm | Normal | 16.0 [29] | 5.80 × 10−3 [29] |
5 | Inner circle diameter of nut s | mm | Normal | 24.0 [29] | 4.60 × 10−3 [29] |
6 | Height of nut m | mm | Normal | 8.00 [29] | 2.38 × 10−2 [29] |
7 | Elastic modulus E1 | MPa | Normal | 2.00 × 105 [30] | 0.05 [20] |
No. | Parameter | Unit | Distribution | Mean | CoV |
---|---|---|---|---|---|
1 | Elastic modulus E2 | MPa | Normal | 2.09 × 105 [31] | 0.05 [21] |
2 | Chamfer δ | mm | Normal | 0.200 [31] | 0.25 [21] |
3 | Major diameter of small spline D1 | mm | Normal | 20.0 [31] | 2.15 × 10−3 |
4 | Minor diameter of small spline D2 | mm | Normal | 17.5 [13] | 3.43 × 10−3 |
5 | Fatigue strength coefficient σf2′ | MPa | Normal | 2.04 × 103 [31] | 0.05 [21] |
6 | Oxidation wear coefficient ky | / | Normal | 8.60 × 10−9 [27] | 0.05 [21] |
Order | Parameter | Unit | Distribution | Mean | Coefficients of Variation |
---|---|---|---|---|---|
1 | Thickness h2 | mm | Normal | 5.90 | 2.83 × 10−3 |
2 | Inside diameter d2 | mm | Normal | 30.0 | 2.30 × 10−4 |
3 | Elastic modulus E3 | MPa | Normal | 1.25 × 105 | 0.05 [21] |
4 | Spring pressure p | MPa | Normal | 0.0650 | 0.05 [21] |
5 | Brinell hardness H | HB | Normal | 33.0 | 0.05 [21] |
6 | Wear coefficient k | / | Normal | 3.30 × 10−7 | 0.05 [21] |
Order | Parameter | Unit | Distribution | Mean | Coefficients of Variation |
---|---|---|---|---|---|
1 | Fuel pressure on the back of blade P2 | MPa | Normal | 0.30 | 0.05 [21] |
2 | Fuel pressure on the front of blade P1 | MPa | Normal | 0.50 | 0.05 [21] |
3 | Elastic modulus E4 | Mpa | Normal | 7.18 × 104 | 0.05 [21] |
4 | Blade thickness W0 | mm | Normal | 1.60 | 9.36 × 10−3 |
5 | Fatigue strength coefficient σf4′ | Mpa | Normal | 1.37 × 103 | 0.05 [21] |
6 | Fatigue strength index b4 | / | Normal | −7.30 × 10−2 | 0.05 [21] |
Key Components | Assembly Surfaces |
---|---|
Sealing bolt | Outer surface of the stud Lower surface of the bolt head Upper surface of the nut data |
Spline shaft | Outer surface of the optical shaft data |
Graphite ring | Inner ring surface |
Inducer | Inner ring surface |
Material | Density (kg/m3) | Elastic Modulus (MPa) | Poisson’s Ratio |
---|---|---|---|
40CrNiMoA | 7.83 × 103 | 2.09 × 105 | 0.30 |
9Cr18 | 7.70 × 103 | 2.15 × 105 | 0.26 |
Key Component | Order | Parameter | S |
---|---|---|---|
Sealing bolt | 1 | d | 1.1148 |
2 | b1 | −1.0689 | |
3 | F | −0.7077 | |
4 | σf1′ | 0.5983 | |
5 | s | 0.2806 | |
6 | m | 0.1884 | |
7 | E1 | 0.003 | |
Spline shaft | 1 | D2 | 1.8717 |
2 | D1 | −1.5694 | |
3 | σf3′ | 0.7242 | |
4 | E2 | −0.0683 | |
5 | ky | −0.0566 | |
6 | R | 0.0054 | |
Graphite ring | 1 | d2 | 0.6017 |
2 | p | −0.0705 | |
3 | kn | −0.0696 | |
4 | H | 0.0673 | |
5 | h2 | −0.0221 | |
6 | E3 | −0.0007 | |
Inducer | 1 | P1 | −4.2274 |
2 | W0 | 0.7147 | |
3 | σf4′ | 0.46 | |
4 | P2 | 0.4225 | |
5 | b4 | −0.2206 | |
6 | E4 | −0.0036 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Dong, Y.; Li, Y.; Hu, T.; Guo, Y.; Qian, C.; Yang, Z.; Zheng, H. Reliability Analysis of Critical Systems in A Fuel Booster Pump Using Advanced Simulation Techniques. Materials 2022, 15, 1989. https://doi.org/10.3390/ma15061989
Luo Y, Dong Y, Li Y, Hu T, Guo Y, Qian C, Yang Z, Zheng H. Reliability Analysis of Critical Systems in A Fuel Booster Pump Using Advanced Simulation Techniques. Materials. 2022; 15(6):1989. https://doi.org/10.3390/ma15061989
Chicago/Turabian StyleLuo, Ying, Yuanyuan Dong, Yuguang Li, Tian Hu, Yubei Guo, Cheng Qian, Zhihai Yang, and Hao Zheng. 2022. "Reliability Analysis of Critical Systems in A Fuel Booster Pump Using Advanced Simulation Techniques" Materials 15, no. 6: 1989. https://doi.org/10.3390/ma15061989
APA StyleLuo, Y., Dong, Y., Li, Y., Hu, T., Guo, Y., Qian, C., Yang, Z., & Zheng, H. (2022). Reliability Analysis of Critical Systems in A Fuel Booster Pump Using Advanced Simulation Techniques. Materials, 15(6), 1989. https://doi.org/10.3390/ma15061989