0D/2D Mixed Dimensional Lead-Free Caesium Bismuth Iodide Perovskite for Solar Cell Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Solar Cell Device Fabrication
2.3. Characterisation
3. Results
3.1. SEM Analysis
3.2. The Influence of Solvent Vapour Annealing on I–V Characteristics
3.3. The UV-Vis Measurements
3.4. XRD Characterisation
3.5. Stability Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev. 2019, 119, 3036–3103. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.; Patel, S.B.; Gohel, J.V. Recent trends in efficiency-stability improvement in perovskite solar cells. Mater. Today Energy 2020, 17, 100449. [Google Scholar] [CrossRef]
- NREL, Best Research Cell Efficiency. Available online: https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-rev211214.pdf (accessed on 14 February 2022).
- Lyu, M.; Yun, J.-H.; Cai, M.; Jiao, Y.; Bernhardt, P.V.; Zhang, M.; Wang, Q.; Du, A.; Wang, H.; Liu, G.; et al. Organic–inorganic bismuth (III)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Res. 2016, 9, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Sun, L.; Wu, T.; Chu, T.; Deng, W.; Han, K. First-Principles Screening of All-Inorganic Lead-Free ABX3 Perovskites. J. Phys. Chem. C 2018, 122, 7670–7675. [Google Scholar] [CrossRef]
- Abate, A. Perovskite Solar Cells Go Lead Free. Joule 2017, 1, 659–664. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Ting, H.; Wei, S.; Huang, D.; Wu, C.; Sun, W.; Qu, B.; Wang, S.; Chen, Z.; Xiao, L. Recent progress in lead-free perovskite (-like) solar cells. Mater. Today Energy 2018, 8, 157–165. [Google Scholar] [CrossRef]
- Ava, T.T.; Al Mamun, A.; Marsillac, S.; Namkoong, G. A Review: Thermal Stability of Methylammonium Lead Halide Based Perovskite Solar Cells. Appl. Sci. 2019, 9, 188. [Google Scholar] [CrossRef] [Green Version]
- Boyd, C.C.; Cheacharoen, R.; Leijtens, T.; McGehee, M.D. Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chem. Rev. 2018, 119, 3418–3451. [Google Scholar] [CrossRef]
- Chen, M.; Ju, M.-G.; Garces, H.F.; Carl, A.; Ono, L.K.; Hawash, Z.; Zhang, Y.; Shen, T.; Qi, Y.; Grimm, R.L.; et al. Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nat. Commun. 2019, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Roy, P.; Sinha, N.K.; Tiwari, S.; Khare, A. A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status. Sol. Energy 2020, 198, 665–688. [Google Scholar] [CrossRef]
- Hoefler, S.F.; Trimmel, G.; Rath, T. Progress on lead-free metal halide perovskites for photovoltaic applications: A review. Mon. Chem.-Chem. Mon. 2017, 148, 795–826. [Google Scholar] [CrossRef] [Green Version]
- Chu, L.; Ahmad, W.; Liu, W.; Yang, J.; Zhang, R.; Sun, Y.; Yang, J.; Li, X. Lead-Free Halide Double Perovskite Materials: A New Superstar Toward Green and Stable Optoelectronic Applications. Nano-Micro Lett. 2019, 11, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahajan, P.; Datt, R.; Tsoi, W.C.; Gupta, V.; Tomar, A.; Arya, S. Recent progress, fabrication challenges and stability issues of lead-free tin-based perovskite thin films in the field of photovoltaics. Co-Ord. Chem. Rev. 2020, 429, 213633. [Google Scholar] [CrossRef]
- Miyasaka, T.; Kulkarni, A.; Kim, G.M.; Öz, S.; Jena, A.K. Perovskite Solar Cells: Can We Go Organic-Free, Lead-Free, and Dopant-Free? Adv. Energy Mater. 2020, 10, 1902500. [Google Scholar] [CrossRef]
- Kamat, P.V.; Bisquert, J.; Buriak, J. Lead-free perovskite solar cells. ACS Energy Lett. 2017, 2, 904–905. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Dong, Q.; Eickemeyer, F.T.; Liu, Y.; Dai, Z.; Carl, A.D.; Bahrami, B.; Chowdhury, A.H.; Grimm, R.L.; Shi, Y.; et al. High-Performance Lead-Free Solar Cells Based on Tin-Halide Perovskite Thin Films Functionalized by a Divalent Organic Cation. ACS Energy Lett. 2020, 5, 2223–2230. [Google Scholar] [CrossRef]
- Yang, W.; Igbari, F.; Lou, Y.; Wang, Z.; Liao, L. Tin Halide Perovskites: Progress and Challenges. Adv. Energy Mater. 2019, 10, 1902584. [Google Scholar] [CrossRef]
- Gu, F.; Zhao, Z.; Wang, C.; Rao, H.; Zhao, B.; Liu, Z. Lead-Free Tin-Based Perovskite Solar Cells: Strategies Toward High Performance. Sol. Rrl 2019, 3, 1900213. [Google Scholar] [CrossRef]
- Nasti, G.; Abate, A. Tin Halide Perovskite (ASnX 3) Solar Cells: A Comprehensive Guide toward the Highest Power Conversion Efficiency. Adv. Energy Mater. 2019, 10, 1902467. [Google Scholar] [CrossRef]
- Igbari, F.; Wang, Z.K.; Liao, L.S. Progress of Lead-Free Halide Double Perovskites. Adv. Energy Mater 2019, 9, 1803150. [Google Scholar] [CrossRef]
- Singh, T.; Kulkarni, A.; Ikegami, M.; Miyasaka, T. Effect of Electron Transporting Layer on Bismuth-Based Lead-Free Perovskite (CH3NH3)3 Bi2I9 for Photovoltaic Applications. ACS Appl. Mater. Interfaces 2016, 8, 14542–14547. [Google Scholar] [CrossRef] [PubMed]
- Li, J. Fabrication of Sulfur-Incorporated Bismuth-Based Perovskite Solar Cells via a Vapor-Assisted Solution Process. Sol. Rrl 2019, 3, 1900218. [Google Scholar] [CrossRef]
- Miller, N.C.; Bernechea, M. Research Update: Bismuth based materials for photovoltaics. APL Mater. 2018, 6, 084503. [Google Scholar] [CrossRef] [Green Version]
- Sani, F.; Shafie, S.; Lim, H.N.; Musa, A.O. Advancement on Lead-Free Organic-Inorganic Halide Perovskite Solar Cells: A Review. Materials 2018, 11, 1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, L.C.; Huq, T.N.; MacManus-Driscoll, J.L.; Hoye, R.L. Research Update: Bismuth-based perovskite-inspired photovoltaic materials. APL Mater. 2018, 6, 084502. [Google Scholar] [CrossRef]
- Park, B.-W.; Philippe, B.; Zhang, X.; Rensmo, H.; Boschloo, G.; Johansson, E.M.J. Bismuth Based Hybrid Perovskites A3Bi2I9(A: Methylammonium or Cesium) for Solar Cell Application. Adv. Mater. 2015, 27, 6806–6813. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.B.; Zhu, H.; Johansson, E.M.J. Extended Photo-Conversion Spectrum in Low-Toxic Bismuth Halide Perovskite Solar Cells. J. Phys. Chem. Lett. 2016, 7, 3467–3471. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, B.; Wu, B.; Mulmudi, H.K.; Guet, C.; Weber, K.; Sum, T.C.; Mhaisalkar, S.G.; Mathews, N. Limitations of Cs3Bi2I9 as Lead-Free Photovoltaic Absorber Materials. ACS Appl. Mater. Interfaces 2018, 10, 35000–35007. [Google Scholar] [CrossRef]
- Zhu, H.; Johansson, M.B.; Johansson, E.M.J. The Effect of Dopant-Free Hole-Transport Polymers on Charge Generation and Recombination in Cesium-Bismuth-Iodide Solar Cells. ChemSusChem 2018, 11, 1114–1120. [Google Scholar] [CrossRef]
- Bai, F.; Hu, Y.; Hu, Y.; Qiu, T.; Miao, X.; Zhang, S. Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells. Sol. Energy Mater. Sol. Cells 2018, 184, 15–21. [Google Scholar] [CrossRef]
- Khadka, D.B.; Shirai, Y.; Yanagida, M.; Miyano, K. Tailoring the film morphology and interface band offset of caesium bismuth iodide-based Pb-free perovskite solar cells. J. Mater. Chem. C 2019, 7, 8335–8343. [Google Scholar] [CrossRef]
- Shin, S.S.; Baena, J.P.C.; Kurchin, R.C.; Polizzotti, A.; Yoo, J.J.; Wieghold, S.; Bawendi, M.G.; Buonassisi, T. Solvent-Engineering Method to Deposit Compact Bismuth-Based Thin Films: Mechanism and Application to Photovoltaics. Chem. Mater. 2018, 30, 336–343. [Google Scholar] [CrossRef]
- Liang, G.X.; Chen, X.Y.; Chen, Z.H.; Lan, H.B.; Zheng, Z.H.; Fan, P.; Su, Z.H. Inorganic and Pb-Free CsBi3I10 Thin Film for Photovoltaic Applications. J. Phys. Chem. C 2019, 45, 27423–27428. [Google Scholar] [CrossRef]
- Johansson, M.B.; Philippe, B.; Banerjee, A.; Phuyal, D.; Mukherjee, S.; Chakraborty, S.; Cameau, M.; Zhu, H.; Ahuja, R.; Boschloo, G.; et al. Cesium Bismuth Iodide Solar Cells from Systematic Molar Ratio Variation of CsI and BiI3. Inorg. Chem. 2019, 58, 12040–12052. [Google Scholar] [CrossRef] [PubMed]
- Wenderott, J.K.; Raghav, A.; Shtein, M.; Green, P.F.; Satapathi, S. Local optoelectronic characterization of solvent-annealed, lead-free, bismuth-based perovskite films. Langmuir 2018, 34, 7647–7654. [Google Scholar] [CrossRef] [PubMed]
- Noel, N.K.; Stranks, S.D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.A.; Sadhanala, A.; Eperon, G.E.; Pathak, S.K.; Johnston, M.B.; et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 9, 3061–3068. [Google Scholar] [CrossRef]
- Jung, M.; Ji, S.-G.; Kim, G.; Seok, S.I. Perovskite precursor solution chemistry: From fundamentals to photovoltaic applications. Chem. Soc. Rev. 2019, 48, 2011–2038. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.-H.; Wang, Y.-H.; Ke, J.-C.; Huang, C.-J. The Effect of Solvents on the Performance of CH3NH3PbI3 Perovskite Solar Cells. Energies 2017, 10, 599. [Google Scholar] [CrossRef] [Green Version]
- Dubey, A.; Adhikari, N.; Mabrouk, S.; Wu, F.; Chen, K.; Yang, S.; Qiao, Q. A strategic review on processing routes towards highly efficient perovskite solar cells. J. Mater. Chem. A 2018, 6, 2406–2431. [Google Scholar] [CrossRef]
- Xiao, Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J. Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement. Adv. Mater. 2014, 26, 6503–6509. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liu, X.; Xia, Y.; Dong, Q.; Zhang, K.; Wang, Z.; Zhou, Y.; Song, B.; Li, Y. Room-temperature mixed-solvent-vapor annealing for high performance perovskite solar cells. J. Mater. Chem. A 2015, 4, 321–326. [Google Scholar] [CrossRef]
- Pitchaiya, S.; Natarajan, M.; Santhanam, A.; Asokan, V.; Yuvapragasam, A.; Ramakrishnan, V.M.; Palanisamy, S.E.; Sundaram, S.; Velauthapillai, D. A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application. Arab. J. Chem. 2020, 13, 2526–2557. [Google Scholar] [CrossRef]
- Wang, K.; Chen, H.; Niu, T.; Wang, S.; Guo, X.; Wang, H. Dopant-Free Hole Transport Materials with a Long Alkyl Chain for Stable Perovskite Solar Cells. Nanomaterials 2019, 9, 935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uddin, A. Perovskite solar cells. In World Scientific Handbook of Organic Optoelectronic Devices Volume 1 Perovskite Electron; Huang, J., Yuan, Y., Eds.; World Scientific: Munich, Germany, 2018; pp. 285–367. [Google Scholar]
- Guo, X.; Zhang, B.; Lin, Z.; Su, J.; Yang, Z.; Zhang, C.; Chang, J.; Liu, S.; Hao, Y. Highly efficient perovskite solar cells based on a dopant-free conjugated DPP polymer hole transport layer: Influence of solvent vapor annealing. Sustain. Energy Fuels 2018, 2, 2154–2159. [Google Scholar] [CrossRef]
- Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 2015, 6, 7747. [Google Scholar] [CrossRef]
- Xu, X.; Ma, C.; Cheng, Y.; Xie, Y.; Yi, X.; Gautam, B.; Chen, S.; Li, H.-W.; Lee, C.-S.; So, F.; et al. Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted planar perovskite solar cells with efficiency exceeding 18%. J. Power Sources 2017, 360, 157–165. [Google Scholar] [CrossRef]
- Shin, J.; Kim, M.; Jung, S.; Kim, C.S.; Park, J.; Song, A.; Chung, K.-B.; Jin, S.-H.; Lee, J.H.; Song, M. Enhanced efficiency in lead-free bismuth iodide with post treatment based on a hole-conductor-free perovskite solar cell. Nano Res. 2018, 11, 6283–6293. [Google Scholar] [CrossRef]
- Yu, B.-B.; Liao, M.; Yang, J.; Chen, W.; Zhu, Y.; Zhang, X.; Duan, T.; Yao, W.; Wei, S.-H.; He, Z. Alloy-induced phase transition and enhanced photovoltaic performance: The case of Cs3Bi2I9−xBrx perovskite solar cells. J. Mater. Chem. A 2019, 7, 8818–8825. [Google Scholar] [CrossRef]
- Waykar, R.; Bhorde, A.; Nair, S.; Pandharkar, S.; Gabhale, B. Environmentally stable lead-free cesium bismuth iodide (Cs3Bi2I9) perovskite: Synthesis to solar cell application. J. Phys. Chem. Solids 2020, 146, 109608. [Google Scholar] [CrossRef]
Solvent Type | Annealing Condition | Scan. | ||||
---|---|---|---|---|---|---|
DMF only At 160 °C | CA | Reverse | 0.37 | 1.42 | 46.13 | 0.25 |
Forward | 0.40 | 1.44 | 45.08 | 0.26 | ||
with SVA | Reverse | 0.49 | 3.56 | 53.53 | 0.94 | |
Forward | 0.50 | 3.58 | 54.42 | 0.98 | ||
At 140 °C | CA | Reverse | 0.35 | 1.41 | 32.11 | 0.16 |
Forward | 0.35 | 1.38 | 31.14 | 0.15 | ||
with SVA | Reverse | 0.35 | 5.37 | 34.60 | 0.65 | |
Forward | 0.36 | 5.32 | 34.10 | 0.65 |
Compound | Device Structure | Jsc (mAcm−2) | Voc (V) | FF% | PCE (%) | REF |
---|---|---|---|---|---|---|
Cs3Bi2I9 | FTO/c-TiO2/m-TiO2/Cs3Bi2I9/Spiro-OMeTAD/Ag | 2.15 | 0.85 | 60 | 1.09 | [28] |
Cs3Bi2I9 | FTO/c-TiO2/m-TiO2/Cs3Bi2I9/P3HT/Ag | 0.18 | 0.26 | 37 | 0.02 | [29] |
CsBi3I10 | FTO/c-TiO2/m-TiO2/CsBi3I10/P3HT/Ag | 3.40 | 0.31 | 38 | 0.4 | [29] |
Cs3Bi2I9 | FTO/c-TiO2/m-TiO2/Cs3Bi2I9/Spiro-OMeTAD/Au | 0.67 | 0.49 | 64 | 0.21 | [30] |
CsBi3I10 | FTO/c-TiO2/m-TiO2/CsBi3I10/P3HT/Au | 2.40 | 0.34 | 44 | 0.36 | [31] |
CsBi3I10 | FTO/c-TiO2/m-TiO2/CsBi3I10/P3T1/Au | 2.60 | 0.47 | 38 | 0.47 | [31] |
CsBi3I10 | FTO/c-TiO2/m-TiO2/CsBi3I10/TQ1/Au | 2.38 | 0.62 | 52 | 0.77 | [31] |
Cs3Bi2I9 | FTO/c-TiO2/Cs3Bi2I9/Spiro-OMeTAD/Au | 4.45 | 0.79 | 50 | 1.77 | [32] |
Cs3Bi2I9 | FTO/c-TiO2/Cs3Bi2I9/PTAA/Au | 4.82 | 0.83 | 57 | 2.3 | [32] |
Cs3Bi2I9 | FTO/c-TiO2/Cs3Bi2I9/CuI/Au | 5.78 | 0.86 | 64 | 3.2 | [32] |
Cs3Bi2I9 | FTO/c-TiO2/m-TiO2/m-ZrO2/Cs3Bi2I9/C | 4.75 | 0.46 | 69 | 1.51 | [50] |
Cs3Bi2I9 | ITO/NiOx/Cs3Bi2I9/PCBM/C60/BCB/Ag | 0.51 | 0.75 | 59 | 0.23 | [51] |
Cs3Bi2I6Br3 | ITO/NiOx/Cs3Bi2I6Br3/PCBM/C60/BCB/Ag | 3.15 | 0.64 | 57 | 1.15 | [51] |
Cs3Bi2I9 | ITO/PTAA/Cs3Bi2I9/PCBM/AZO/Ag | 1.76 | 0.47 | 45 | 0.37 | [33] |
Cs3Bi2I9 | ITO/PEDOT:PSS/Cs3Bi2I9/PCBM/AZO/Ag | 0.54 | 0.38 | 35 | 0.073 | [33] |
Cs3Bi2I9 | ITO/NiOx/Cs3Bi2I9/PCBM/AZO/Ag | 3.42 | 0.74 | 51 | 1.26 | [33] |
CsBi3I10 | FTO/c-TiO2/m-TiO2/CsBi3I10/Spiro-OMeTAD/Ag | 4.45 | 0.55 | 42 | 1.03 | [35] |
Cs3Bi2I9 | AZO/c-TiO2/Cs3Bi2I9/CuSCN/graphite | 1.43 | 0.37 | 32 | 0.17 | [52] |
CsaBibIx | FTO/c-TiO2/m-TiO2/CsaBibIx(1:1)/TQ1/Au | 2.22 | 0.57 | 49 | 0.62 | [36] |
CsaBibIX | FTO/c-TiO2/m-TiO2/CsaBibIx(1:2)/TQ1/Au | 2.79 | 0.43 | 42 | 0.5 | [36] |
CsaBibIX | FTO/c-TiO2/m-TiO2/CsaBibIx(1:3)/TQ1/Au | 3.18 | 0.37 | 40 | 0.47 | [36] |
CsaBibIX | FTO/c-TiO2/m-TiO2/CsaBibIx(1.5:1)/TQ1/Au | 0.29 | 0.68 | 33 | 0.07 | [36] |
CsaBibIX | FTO/c-TiO2/m-TiO2/CsaBibIx(1:1.5)/Spiro-OMeTAD/Au | 3.58 | 0.50 | 54 | 0.98 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masawa, S.M.; Li, J.; Zhao, C.; Liu, X.; Yao, J. 0D/2D Mixed Dimensional Lead-Free Caesium Bismuth Iodide Perovskite for Solar Cell Application. Materials 2022, 15, 2180. https://doi.org/10.3390/ma15062180
Masawa SM, Li J, Zhao C, Liu X, Yao J. 0D/2D Mixed Dimensional Lead-Free Caesium Bismuth Iodide Perovskite for Solar Cell Application. Materials. 2022; 15(6):2180. https://doi.org/10.3390/ma15062180
Chicago/Turabian StyleMasawa, Salma Maneno, Jihong Li, Chenxu Zhao, Xiaolong Liu, and Jianxi Yao. 2022. "0D/2D Mixed Dimensional Lead-Free Caesium Bismuth Iodide Perovskite for Solar Cell Application" Materials 15, no. 6: 2180. https://doi.org/10.3390/ma15062180
APA StyleMasawa, S. M., Li, J., Zhao, C., Liu, X., & Yao, J. (2022). 0D/2D Mixed Dimensional Lead-Free Caesium Bismuth Iodide Perovskite for Solar Cell Application. Materials, 15(6), 2180. https://doi.org/10.3390/ma15062180