Construction of Supramolecular Systems That Achieve Lifelike Functions
Abstract
:1. Introduction
2. Response of Supramolecular Self-Assembly to Stimuli
2.1. Gels
2.2. Vesicles
2.3. Other Supramolecular Self-Assemblies
3. Time Evolution of Supramolecular Self-Assemblies
3.1. Supramolecular Polymerization
3.2. Polymerization-Induced Self-Assembly (PISA)
3.3. Dynamic Combinatorial Chemistry (DCC)
4. Dissipative Self-Assembly
5. Functionalization of Supramolecular Self-Assemblies with Hierarchical Properties
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pedersen, C.J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 7017–7036. [Google Scholar]
- Nobel Prize Organization. Available online: https://www.nobelprize.org/prizes/chemistry/1987/press-release/ (accessed on 14 October 1987).
- Nobel Prize Organization. Available online: https://www.nobelprize.org/prizes/chemistry/1977/press-release/ (accessed on 11 October 1977).
- Nobel Prize Organization. Available online: https://www.nobelprize.org/prizes/chemistry/2016/press-release/ (accessed on 5 October 2016).
- Nobel Prize Organization. Available online: https://www.nobelprize.org/prizes/physics/2021/summary/ (accessed on 5 October 2021).
- Ashkenasy, G.; Hermans, T.M.; Otti, S.; Taylor, A.F. Systems chemistry. Chem. Soc. Rev. 2017, 46, 2543–2554. [Google Scholar] [PubMed]
- van Esch, J.H.; Feringa, B.L. New functional materials based on self-assembling organogels: From serendipity towards design. Angew. Chem. Int. Ed. 2000, 39, 2263–2266. [Google Scholar]
- Aggeli, A.; Bell, M.; Boden, N.; Keen, J.N.; Knowles, P.F.; McLeish, T.C.B.; Pitkeathly, M.S.; Radford, E. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes. Nature 1997, 386, 259–262. [Google Scholar] [PubMed]
- Murata, K.; Aoki, M.; Nishi, T.; Ikeda, A.; Sinkai, S. New cholesterol-based gelators with light- and metal-responsive functions. J. Chem. Soc. Chem. Commun. 1991, 24, 1715–1718. [Google Scholar]
- Jung, J.H.; Ono, Y.; Shinkai, S. Organogels of azacrown-appended cholesterol derivatives can be stabilized by host-guest interactions. Tetrahedron Lett. 1999, 40, 8395–8399. [Google Scholar]
- Engelkamp, H.; Middelbeek, S.; Nolte, R.J.M. Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity. Science 1999, 284, 785–788. [Google Scholar]
- Meazza, L.; Foster, J.A.; Fucke, K.; Metrangolo, P.; Resnati, G.; Steed, J.W. Halogen-bonding-triggered supramolecular gel formation. Nat. Chem. 2013, 5, 42–47. [Google Scholar]
- Wang, Q.; Mynar, J.L.; Yoshida, M.; Lee, E.; Lee, M.; Okuro, K.; Kinbara, K.; Aida, T. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 2010, 463, 339–343. [Google Scholar]
- Yan, X.; Xu, D.; Chi, X.; Chen, J.; Dong, S.; Ding, X.; Yu, Y.; Huang, F. A multiresponsive, shape-persistent, and elastic supramolecular polymer network gel constructed by orthogonal Self-assembly. Adv. Mater. 2012, 24, 362–369. [Google Scholar]
- Yang, R.; Peng, S.; Wan, W.; Hughes, T.C. Azobenzene based multistimuli responsive supramolecular hydrogels. J. Mater. Chem. C 2014, 2, 9122–9131. [Google Scholar]
- Yang, R.; Peng, S.; Hughes, T.C. Multistimuli responsive organogels based on a reactive azobenzene gelator. Soft Matter 2014, 10, 2188–2196. [Google Scholar] [PubMed] [Green Version]
- Zhan, J.; Zhang, M.; Zhou, M.; Liu, B.; Chen, D.; Liu, Y.; Chen, Q.; Qiu, H.; Yin, S. A multiple-responsive self-healing supramolecular polymer gel network based on multiple orthogonal interactions. Macromol. Rapid Commun. 2014, 35, 1424–1429. [Google Scholar] [PubMed]
- Rybtchinski, B. Adaptive supramolecular nanomaterials based on strong noncovalent interactions. ACS Nano 2011, 5, 6791–6818. [Google Scholar]
- Dong, S.; Zheng, B.; Wang, F.; Huang, F. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs. Acc. Chem. Res. 2014, 47, 1982–1994. [Google Scholar]
- Luo, F.; Sun, T.L.; Nakajima, T.; Kurokawa, T.; Zhao, Y.; Sato, K.; Ihsan, A.B.; Li, X.; Guo, H.; Gong, J.P. Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels. Adv. Mater. 2015, 27, 2722–2727. [Google Scholar]
- Luo, F.; Sun, T.L.; Nakajima, T.; Kurokawa, T.; Zhao, Y.; Bin Ihsan, A.; Guo, H.L.; Li, X.F.; Gong, J.P. Crack blunting and advancing behaviors of tough and self-healing polyampholyte hydrogel. Macromolecules 2014, 47, 6037–6046. [Google Scholar]
- Guo, Y.; Zhao, X.; Tang, Q.; Bao, H.; Wang, G.; Saha, P. A self-healable and easily recyclable supramolecular hydrogel electrolyte for flexible supercapacitors. J. Mater. Chem. A 2016, 4, 8769–8776. [Google Scholar]
- Fullenkamp, D.E.; He, L.; Barrett, D.G.; Burghardt, W.R.; Messersmith, P.B. Mussel-inspired histidine-based transient network metal coordination hydrogels. Macromolecules 2013, 46, 1167–1174. [Google Scholar]
- Krogsgaard, M.; Hansen, M.R.; Birkedal, H. Metals & polymers in the mix: Fine-tuning the mechanical properties & color of self-healing mussel-inspired hydrogels. J. Mater. Chem. B 2014, 2, 8292–8297. [Google Scholar]
- Shao, C.; Chang, H.; Wang, M.; Xu, F.; Yang, J. High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds. ACS Appl. Mater. Interfaces 2017, 9, 28305–28318. [Google Scholar] [PubMed]
- Song, Y.; Liu, Y.; Qi, T.; Li, G.L. Towards dynamic but supertough healable polymers through biomimetic hierarchical hydrogen-bonding interactions. Angew. Chem. Int. Ed. 2018, 57, 13838–13842. [Google Scholar]
- Tamate, R.; Hashimoto, K.; Horii, T.; Hirasawa, M.; Li, X.; Shibayama, M.; Watanabe, M. Self-healing micellar ion gels based on multiple hydrogen bonding. Adv. Mater. 2018, 30, 1802792. [Google Scholar]
- Fan, H.; Wang, J.; Jin, Z. Tough, swelling-resistant, self-healing, and adhesive dual-cross-linked hydrogels based on polymer–tannic acid multiple hydrogen bonds. Macromolecules 2018, 51, 1696–1705. [Google Scholar]
- Nakahata, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Redox-responsive self-healing materials formed from host–guest polymers. Nat. Commun. 2011, 2, 511. [Google Scholar]
- Zhang, M.; Xu, D.; Yan, X.; Chen, J.; Dong, S.; Zheng, B.; Huang, F. Self-healing supramolecular gels formed by crown ether-based host-guest interactions. Angew. Chem. Int. Ed. 2012, 51, 7011–7015. [Google Scholar]
- Lu, C.; Zhang, M.; Tang, D.; Yan, X.; Zhang, Z.; Zhou, Z.; Song, B.; Wang, H.; Li, X.; Yin, S.; et al. Fluorescent metallacage-core supramolecular polymer gel formed by orthogonal metal coordination and host–guest interactions. J. Am. Chem. Soc. 2018, 140, 7674–7680. [Google Scholar]
- Nakahata, M.; Mori, S.; Takashima, Y.; Yamauchi, H.; Harada, A. Self-healing materials formed by cross-linked polyrotaxanes with reversible bonds. Chem 2016, 1, 766–775. [Google Scholar]
- Park, J.; Murayama, S.; Osaki, M.; Yamaguchi, H.; Harada, A.; Matsuda, G.; Takashima, Y. Extremely rapid self-healable and recyclable supramolecular materials through planetary ball milling and host–guest interactions. Ads. Mater. 2020, 32, 2002008. [Google Scholar]
- Israelachvili, J. Intermolecular and Surface Forces, 3rd ed.; Academic Press: Cambridge, MA, USA, 2011; pp. 535–576. [Google Scholar]
- Kunitake, T.; Okahata, Y. A totally synthetic bilayer membrane. J. Am. Chem. Soc. 1977, 99, 3860–3861. [Google Scholar]
- Horbaschek, K.; Hofmann, H.; Thunig, C. Formation and properties of lamellar phases in systems of cationic surfactants and hydroxy-naphthoate. J. Colloid Interface Sci. 1998, 206, 439–456. [Google Scholar] [PubMed]
- Yin, H.; Zhou, Z.; Huang, J.; Zheng, R.; Zhang, Y. Temperature-induced micelle to vesicle transition in the sodium dodecylsulfate/dodecyltriethylammonium bromide system. Angew. Chem. Int. Ed. 2003, 42, 2188–2191. [Google Scholar]
- Tameyuki, M.; Hiranaka, H.; Toyota, T.; Asakura, K.; Banno, T. Temperature-dependent dynamics of giant vesicles composed of hydrolysable lipids having an amide linkage. Langmuir 2019, 35, 17075–17081. [Google Scholar] [PubMed]
- Morigaki, K.; Walde, P. Fatty acid vesicles. Curr. Opin. Oncol. 2007, 12, 75–80. [Google Scholar]
- Walde, P.; Wick, R.; Fresta, M.; Mangone, A.; Luisi, P.L. Autopoietic self-reproduction of fatty acid vesicles. J. Am. Chem. Soc. 1994, 116, 11649–11654. [Google Scholar]
- Suga, K.; Yokoi, T.; Kondo, D.; Hayashi, K.; Morita, S.; Okamoto, Y.; Shimanouchi, T.; Umakoshi, H. Systematical characterization of phase behaviors and membrane properties of fatty acid/didecyldimethylammonium bromide vesicles. Langmuir 2014, 30, 12721–12728. [Google Scholar]
- Sawada, D.; Hirono, A.; Asakura, K.; Banno, T. pH-Tolerant giant vesicles composed of cationic lipids with imine linkages and oleic acids. RSC Adv. 2020, 10, 34247–34253. [Google Scholar]
- Fernyhough, C.; Ryan, A.J.; Battaglia, G. pH controlled assembly of a polybutadiene–poly(methacrylic acid) copolymer in water: Packing considerations and kinetic limitations. Soft Matter 2009, 5, 1674–1682. [Google Scholar]
- Shin, S.H.R.; McAninch, P.T.; Henderson, I.M.; Gomez, A.; Greene, A.C.; Carnes, E.C.; Paxton, W.F. Self-assembly/disassembly of giant double-hydrophilic polymersomes at biologically-relevant pH. Chem. Commun. 2018, 54, 9043–9046. [Google Scholar]
- Pijpers, I.A.B.; Meng, F.; van Hest, J.C.M.; Abdelmohsen, L.K.E.A. Investigating the Self-assembly and shape transformation of poly(ethylene glycol)-b-poly(D,L-lactide) (PEG-PDLLA) polymersomes by tailoring solvent-polymer interactions. Polym. Chem. 2020, 11, 275–280. [Google Scholar]
- Pijpers, I.A.B.; Abdelmohsen, L.K.E.A.; Williams, D.S.; van Hest, J.C.M. Morphology under control: Engineering biodegradable stomatocytes. ACS Macro Lett. 2017, 6, 1217–1222. [Google Scholar] [PubMed]
- Sakaino, H.; Sawayama, J.; Kabashima, S.; Yoshikawa, I.; Araki, K. Dry micromanipulation of supramolecular giant vesicles on a silicon substrate: Highly stable hydrogen-bond-directed nanosheet membrane. J. Am. Chem. Soc. 2012, 134, 15684–15687. [Google Scholar] [PubMed]
- Muraoka, T.; Shima, T.; Hamada, T.; Morita, M.; Takagi, M.; Tabata, K.V.; Noji, H.; Kinbara, K. Ion permeation by a folded multiblock amphiphilic oligomer achieved by hierarchical construction of self-assembled nanopores. J. Am. Chem. Soc. 2012, 134, 19788–19794. [Google Scholar] [PubMed]
- Muraoka, T.; Endo, T.; Tabata, K.V.; Noji, H.; Nagotoishi, S.; Tsumoto, K.; Li, R.; Kinbara, K. Reversible ion transportation switch by a ligand-gated synthetic supramolecular ion channel. J. Am. Chem. Soc. 2014, 136, 15584–15595. [Google Scholar] [PubMed]
- Chiu, H.-C.; Lin, Y.-W.; Huang, Y.-F.; Chuang, C.-K.; Chern, C.-S. Polymer vesicles containing small vesicles within interior aqueous compartments and pH-responsive transmembrane channels. Angew. Chem. Int. Ed. 2008, 47, 1875–1878. [Google Scholar]
- Yu, Y.; Jiang, X.; Gong, S.; Feng, L.; Zhong, Y.; Pang, Z. The proton permeability of self-assembled polymersomes and their neuroprotection by enhancing a neuroprotective peptide across the blood–brain barrier after modification with lactoferrin. Nanoscale 2014, 6, 3250–3258. [Google Scholar]
- Brinkhuis, R.P.; Rutjes, F.P.J.T.; van Hest, J.C.M. Polymeric vesicles in biomedical applications. Polym. Chem. 2011, 2, 1449–1462. [Google Scholar]
- Wang, C.; Wang, G.; Wang, Z.; Zhang, X. A pH-responsive superamphiphile based on dynamic covalent bonds. Chem. Eur. J. 2011, 17, 3322–3325. [Google Scholar]
- Lutz, E.; Moulin, E.; Tchakalova, V.; Benczédi, D.; Herrmann, A.; Giuseppone, N. Design of stimuli-responsive dynamic covalent delivery systems for volatile compounds (part 1): Controlled hydrolysis of micellar amphiphilic imines in water. Chem. Eur. J. 2021, 27, 13457–13467. [Google Scholar]
- Tchakalova, V.; Lutz, E.; Lamboley, S.; Moulin, E.; Benczédi, D.; Giuseppone, N.; Herrmann, A. Design of stimuli-responsive dynamic covalent delivery systems for volatile compounds (part 2): Fragrance-releasing cleavable surfactants in functional perfumery applications. Chem. Eur. J. 2021, 27, 13468–13476. [Google Scholar]
- Toyota, T.; Takakura, K.; Kose, J.; Sugawara, T. Hierarchical dynamics in the morphological evolution from micelles to giant vesicles induced by hydrolysis of an amphiphile. Chem. Phys. Chem. 2006, 7, 1425–1427. [Google Scholar] [PubMed]
- Yuasa, H.; Asakura, K.; Banno, T. Sequential dynamic structuralisation by in situ production of supramolecular building blocks. Chem. Commun. 2017, 56, 8553–8556. [Google Scholar]
- Sawada, D.; Asakura, K.; Banno, T. Pathway-dependent phase transitions of supramolecular self-assemblies containing cationic amphiphiles with azobenzene and disulfide groups. Chem. Eur. J. 2021, 27, 13840–13845. [Google Scholar] [PubMed]
- De Greef, T.F.A.; Smulders, M.M.J.; Wolffs, M.; Schenning, A.P.H.J.; Sijbesma, R.P.; Meijer, E.W. Supramolecular Polymerization. Chem. Rev. 2009, 109, 5687–5954. [Google Scholar]
- Jonkheijm, P.; van der Schoot, P.; Schenning, A.P.H.J.; Meijer, E.W. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 2006, 313, 80–83. [Google Scholar]
- Korevaar, P.A.; George, S.J.; Markvoort, A.J.; Smulders, M.M.J.; Hilbers, P.A.J.; Schenning, A.P.H.J.; De Greef, T.F.A.; Meijer, E.W. Pathway complexity in supramolecular polymerization. Nature 2012, 481, 492–496. [Google Scholar]
- Wang, X.; Guerin, G.; Wang, H.; Wang, Y.; Manners, I.; Winnik, M.A. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 2007, 317, 644–647. [Google Scholar]
- Gilroy, J.B.; Gädt, T.; Whittell, G.R.; Chabanne, L.; Mitchel, J.M.; Richardson, R.M.; Winnik, M.A.; Manners, I. Monodisperse cylindrical micelles by crystallization-driven living Self-assembly. Nat. Chem. 2010, 2, 566–570. [Google Scholar]
- Ogi, S.; Sugiyasu, K.; Manna, S.; Samitsu, S.; Takeuchi, M. Living supramolecular polymerization realized through a biomimetic approach. Nat. Chem. 2014, 6, 188–195. [Google Scholar]
- Kang, J.; Miyajima, D.; Mori, T.; Inoue, Y.; Itoh, Y.; Aida, T. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 2015, 347, 646–651. [Google Scholar]
- Endo, M.; Fukui, T.; Jung, S.H.; Yagai, S.; Takeuchi, M.; Sugiyasu, K. Photoregulated living supramolecular polymerization established by combining energy landscapes of photoisomerization and nucleation-elongation processes. J. Am. Chem. Soc. 2016, 138, 14347–14353. [Google Scholar] [PubMed]
- Sarkar, S.; Sarkar, A.; George, S.J. Stereoselective seed-induced living supramolecular polymerization. Angew. Chem. Int. Ed. 2020, 59, 19841–19845. [Google Scholar]
- Hecht, M.; Leowanawat, P.; Gerlach, T.; Stepanenko, V.; Stolte, M.; Lehmann, M.; Würthner, F. Self-sorting supramolecular polymerization: Helical and lamellar aggregates of tetra-bay-acyloxy perylene bisimide. Angew. Chem. Int. Ed. 2020, 59, 17084–17090. [Google Scholar]
- Sugihara, S.; Blanazs, A.; Armes, S.P.; Ryan, A.J.; Lewis, A.L. Aqueous dispersion polymerization: A new paradigm for in situ block copolymer Self-assembly in concentrated solution. J. Am. Chem. Soc. 2011, 133, 15707–15713. [Google Scholar]
- Blanazs, A.; Madsen, J.; Battaglia, G.; Ryan, A.J.; Armes, S.P. Mechanistic insights for block copolymer morphologies: How do worms form vesicles? J. Am. Chem. Soc. 2011, 133, 16581–16587. [Google Scholar]
- Chen, X.; Liu, L.; Huo, M.; Zeng, M.; Peng, L.; Feng, A.; Wang, X.; Yuan, J. Direct synthesis of polymer nanotubes by aqueous dispersion polymerization of a cyclodextrin/styrene complex. Angew. Chem. Int. Ed. 2017, 56, 16541–16545. [Google Scholar]
- Chen, X.; An, N.; Zeng, M.; Yuan, J. Host–guest complexation modulated aqueous polymerization-induced Self-assembly for monodisperse hierarchical nanoflowers. Chem. Commun. 2021, 57, 13720–13723. [Google Scholar]
- Cao, C.; Chen, F.; Garvey, C.J.; Stenzel, M.H. Drug-directed morphology changes in polymerization-induced Self-assembly (PISA) influence the biological behavior of nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 30221–30233. [Google Scholar]
- Liu, C.; Hong, C.-Y.; Pan, C.-Y. Polymerization techniques in polymerization-induced Self-assembly (PISA). Polym. Chem. 2020, 11, 3673–3689. [Google Scholar]
- Zhao, Q.; Liu, Q.; Li, C.; Cao, L.; Ma, L.; Wang, X.; Cai, Y. Noncovalent structural locking of thermoresponsive polyion complex micelles, nanowires, and vesicles via polymerization-induced electrostatic Self-assembly using an arginine-like monomer. Chem. Commun. 2020, 56, 4954–4957. [Google Scholar]
- Ikkene, D.; Arteni, A.A.; Ouldali, M.; Francius, G.; Brûlet, A.; Six, J.-L.; Ferji, K. Direct access to polysaccharide-based vesicles with a tunable membrane thickness in a large concentration window via polymerization-induced Self-assembly. Biomacromolecules 2021, 22, 3128–3137. [Google Scholar] [PubMed]
- Pearce, S.; Perez-Mercader, J. PISA: Construction of self-organized and self-assembled functional vesicular structures. Polym. Chem. 2021, 12, 29–49. [Google Scholar]
- Szymański, J.K.; Pérez-Mercader, J. Direct optical observations of vesicular Self-assembly in large-scale polymeric structures during photocontrolled biphasic polymerization. Polym. Chem. 2016, 7, 7211–7215. [Google Scholar]
- Albertsen, A.N.; Szymański, J.K.; Pérez-Mercader, J. Emergent properties of giant vesicles formed by a polymerization-induced Self-assembly (PISA) reaction. Sci. Rep. 2017, 7, 41534. [Google Scholar] [PubMed] [Green Version]
- Nquyen, R.; Allouche, L.; Buhler, E.; Giuseppone, N. Dynamic combinatorial evolution within self-replicating supramolecular assemblies. Angew. Chem. Int. Ed. 2009, 48, 1093–1096. [Google Scholar]
- Minkenberg, C.B.; Florusse, L.; Eelkema, R.; Koper, G.J.M.; van Esch, J.H. Triggered Self-assembly of simple dynamic covalent surfactants. J. Am. Chem. Soc. 2009, 131, 11274–11275. [Google Scholar]
- Giuseppone, N.; Lehn, J.-M. Electric-field modulation of component exchange in constitutional dynamic liquid crystals. Angew. Chem. Int. Ed. 2006, 45, 4619–4624. [Google Scholar]
- Carnall, J.M.A.; Waudby, C.A.; Belenguer, A.M.; Stuart, M.C.A.; Peyralans, J.J.-P.; Otto, S. Mechanosensitive self-replication driven by self-organization. Science 2010, 327, 1502–1506. [Google Scholar]
- Komáromy, D.; Stuart, M.C.A.; Santiago, G.M.; Tezcan, M.; Krasnikov, V.V.; Otto, S. Self-assembly can direct dynamic covalent bond formation toward diversity or specificity. J. Am. Chem. Soc. 2017, 139, 6234–6241. [Google Scholar]
- Bartolec, B.; Leonetti, G.; Li, J.; Smit, W.; Altay, M.; Santiago, G.M.; Yan, Y.; Otto, S. Emergence of compartments formed from unconventional surfactants in dynamic combinatorial libraries. Langmuir 2019, 35, 5787–5792. [Google Scholar]
- Santiago, G.M.; Liu, K.; Browne, W.R.; Otto, S. Emergence of light-driven protometabolism on recruitment of a photocatalytic cofactor by a self-replicator. Nat. Chem. 2020, 12, 603–607. [Google Scholar]
- Altay, Y.; Tezcan, M.; Otto, S. Emergence of a new self-replicator from a dynamic combinatorial library requires a specific pre-existing replicator. J. Am. Chem. Soc. 2017, 139, 13612–13615. [Google Scholar] [PubMed]
- Maiti, S.; Fortunati, I.; Ferrante, C.; Scrimin, P.; Prins, L.J. Dissipative Self-assembly of vesicular nanoreactors. Nat. Chem. 2016, 8, 725–731. [Google Scholar] [PubMed]
- Chandrabhas, S.; Maiti, S.; Fortunati, I.; Ferrante, C.; Gabrielli, L.; Prins, L.J. Nucleotide-selective templated Self-assembly of nanoreactors under dissipative conditions. Angew. Chem. Int. Ed. 2020, 59, 22223–22229. [Google Scholar]
- Tena-Solsona, M.; Rieß, B.; Grötsch, R.K.; Löhrer, F.C.; Wanzke, C.; Käsdorf, B.; Bausch, A.R.; Müller-Buschbaum, P.; Lieleg, O.; Boekhoven, J. Non-equilibrium dissipative supramolecular materials with a tunable lifetime. Nat. Commun. 2017, 9, 1295. [Google Scholar]
- Kumar, M.; Sementa, D.; Narang, V.; Riebo, E.; Ulijn, R.V. Self-assembly propensity dictates lifetimes in transient naphthalimide–dipeptide nanofibers. Chem. Eur. J. 2020, 26, 8372–8376. [Google Scholar]
- Khan, M.A.R.; Al Mamun, M.S.; Ara, M.H. Review on platinum nanoparticles: Synthesis, characterization, and applications. Microchem. J. 2021, 171, 106840. [Google Scholar]
- Wang, S.; Wu, N. Selecting the swimming mechanisms of colloidal particles: Bubble propulsion versus self-diffusiophoresis. Langmuir 2014, 30, 3477–3486. [Google Scholar]
- Hayakawa, M.; Onoe, H.; Nagai, K.H.; Takinoue, M. Influence of asymmetry and driving forces on the propulsion of bubble-propelled catalytic micromotors. Micromachines 2016, 7, 229. [Google Scholar]
- Wilson, D.A.; Nolte, R.J.M.; van Hest, J.C.M. Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 2012, 4, 268–274. [Google Scholar]
- Tu, Y.; Peng, F.; White, P.B.; Wilson, D.A. Redox-sensitive stomatocyte nanomotors: Destruction and drug release in the presence of glutathione. Angew. Chem. In. Ed. 2017, 56, 7620–7624. [Google Scholar]
- Tu, Y.; Peng, F.; Heuverlmans, J.M.; Liu, S.; Nolte, R.J.M.; Wilson, D.A. Motion control of polymeric nanomotors based on host-guest interactions. Angew. Chem. In. Ed. 2019, 58, 8687–8691. [Google Scholar]
- Che, H.; Zhu, J.; Song, S.; Mason, A.F.; Cao, S.; Pijpers, I.A.B.; Abdelmohsen, L.K.E.A.; van Hest, J.C.M. ATP-mediated transient behavior of stomatocyte nanosystems. Angew. Chem. Int. Ed. 2019, 58, 13113–13118. [Google Scholar]
- Toyota, T.; Sugiyama, H.; Hiroi, S.; Ito, H.; Kitahata, H. Chemically artificial rovers based on self-propelled droplets in micrometer-scale environment. Curr. Opin. Colloid Interface Sci. 2020, 49, 60–68. [Google Scholar]
- Toyota, T.; Maru, N.; Hanczyc, M.M.; Ikegami, T.; Sugawara, T. Self-propelled oil droplets consuming “fuel” surfactant. J. Am. Chem. Soc. 2009, 131, 5012–5013. [Google Scholar]
- Babu, D.; Scanes, R.J.H.; Plamont, R.; Ryabchun, A.; Lancia, F.; Kudernac, T.; Fletcher, S.P.; Katsonis, N. Acceleration of lipid reproduction by emergence of microscopic motion. Nat. Commun. 2021, 12, 2959. [Google Scholar]
- Nguindjel, A.-D.C.; Korevaar, P.A. Self-sustained marangoni flows driven by chemical reactions. Chem. Syst. Chem. 2021, 3, e2100021. [Google Scholar]
- Banno, T.; Toyota, T. Molecular system for the division of self-propelled oil droplets by component feeding. Langmuir 2015, 31, 6943–6947. [Google Scholar]
- Banno, T.; Kuroha, R.; Miura, S.; Toyota, T. Multiple-division of self-propelled oil droplets through acetal formation. Soft Matter 2015, 11, 1459–1463. [Google Scholar]
- Banno, T.; Asami, A.; Ueno, N.; Kitahata, H.; Koyano, Y.; Asakura, K.; Toyota, T. Deformable self-propelled micro-object comprising underwater oil droplets. Sci. Rep. 2016, 6, 31292. [Google Scholar]
- Gutierrez, J.M.; Hinkley, T.; Taylor, J.W.; Yanev, K.; Cronin, L. Evolution of oil droplets in a chemorobotic platform. Nat. Commun. 2014, 5, 5571. [Google Scholar] [PubMed] [Green Version]
- Parrilla-Gutierrez, J.M.; Tsuda, S.; Grizou, J.; Taylor, J.; Henson, A.; Cronin, L. Adaptive artificial evolution of droplet protocells in a 3D-printed fluidic chemorobotic platform with configurable environments. Nat. Commun. 2017, 8, 1144. [Google Scholar] [PubMed]
- Points, L.J.; Taylor, J.W.; Grizou, J.; Donkers, K.; Cronin, L. Artificial intelligence exploration of unstable protocells leads to predictable properties and discovery of collective behavior. Proc. Natl. Acad. Sci. USA 2018, 115, 885–890. [Google Scholar] [PubMed] [Green Version]
- Meredith, C.H.; Moerman, P.G.; Groenewold, J.; Chiu, Y.-J.; Kegel, W.K.; van Blaaderen, A.; Zarzar, L.D. Predator–prey interactions between droplets driven by non-reciprocal oil exchange. Nat. Chem. 2020, 12, 1136–1142. [Google Scholar]
- Mason, A.F.; Buddingh’, B.C.; Williams, D.S.; van Hest, J.C.M. Hierarchical Self-assembly of a Copolymer-Stabilized Coacervate Protocell. J. Am. Chem. Soc. 2017, 139, 17309–17312. [Google Scholar]
- Tang, T.D.; Hak, C.R.C.; Thompson, A.J.; Kuimova, M.K.; Williams, D.S.; Perriman, A.W.; Mann, S. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nat. Chem. 2014, 6, 527–533. [Google Scholar]
- Aumiller, W.M.; Keating, C.D. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nat. Chem. 2016, 8, 129–137. [Google Scholar]
- Mattia, E.; Otto, S. Supramolecular systems chemistry. Nat. Nanotechnol. 2015, 10, 111–119. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banno, T.; Sawada, D.; Toyota, T. Construction of Supramolecular Systems That Achieve Lifelike Functions. Materials 2022, 15, 2391. https://doi.org/10.3390/ma15072391
Banno T, Sawada D, Toyota T. Construction of Supramolecular Systems That Achieve Lifelike Functions. Materials. 2022; 15(7):2391. https://doi.org/10.3390/ma15072391
Chicago/Turabian StyleBanno, Taisuke, Daichi Sawada, and Taro Toyota. 2022. "Construction of Supramolecular Systems That Achieve Lifelike Functions" Materials 15, no. 7: 2391. https://doi.org/10.3390/ma15072391
APA StyleBanno, T., Sawada, D., & Toyota, T. (2022). Construction of Supramolecular Systems That Achieve Lifelike Functions. Materials, 15(7), 2391. https://doi.org/10.3390/ma15072391