Onion Peel Waste Mediated-Green Synthesis of Zinc Oxide Nanoparticles and Their Phytotoxicity on Mung Bean and Wheat Plant Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of ZnO Nanoparticles by Using Onion Peel Extract
2.2.1. Preparation of Onion Skin Extract
2.2.2. Synthesis of ZnONPs
2.2.3. Characterization of ZnONPs
2.2.4. Phytotoxicity of the ZnONPs on the Plant Growth
2.2.5. Seedling Exposure
2.2.6. Physico-Chemical Properties of Soil
2.2.7. Root and Shoot Length
2.2.8. Seed Germination Test
2.2.9. Fresh and Dry Weight
3. Results and Discussion
3.1. Morphological Analysis of Synthesized ZnONPs by FESEM and TEM
3.2. Particle Size Distribution of the ZnONPs
3.3. FTIR Study of Synthesized ZnONPs
3.4. Physicochemical Analysis of the Soil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roy, A.; Elzaki, A.; Tirth, V.; Kajoak, S.; Osman, H.; Algahtani, A.; Islam, S.; Faizo, N.L.; Khandaker, M.U.; Islam, M.N.; et al. Biological Synthesis of Nanocatalysts and Their Applications. Catalysts 2021, 11, 1494. [Google Scholar] [CrossRef]
- Yadav, V.K.; Gnanamoorthy, G.; Ali, D.; Bera, S.P.; Roy, A.; Kumar, G.; Choudhary, N.; Kalasariya, H.; Basnet, A.; Velmurugan, P. Cytotoxicity, Removal of Congo Red Dye in Aqueous Solution Using Synthesized Amorphous Iron Oxide Nanoparticles from Incense Sticks Ash Waste. J. Nanomater. 2022, 2022, 5949595. [Google Scholar] [CrossRef]
- Ameen, F.; Alsamhary, K.; Alabdullatif, J.A.; Alnadhari, S. A review on metal-based nanoparticles and their toxicity to beneficial soil bacteria and fungi. Ecotoxicol. Environ. Saf. 2021, 213, 112027. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.K.; Gupta, N.; Kumar, P.; Dashti, M.G.; Tirth, V.; Khan, S.H.; Yadav, K.K.; Islam, S.; Choudhary, N.; Algahtani, A.; et al. Recent Advances in Synthesis and Degradation of Lignin and Lignin Nanoparticles and Their Emerging Applications in Nanotechnology. Materials 2022, 15, 953. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Phull, A.-R.; Zia, M. Elemental zinc to zinc nanoparticles: Is ZnO NPs crucial for life? Synthesis, toxicological, and environmental concerns. Nanotechnol. Rev. 2018, 7, 413–441. [Google Scholar] [CrossRef]
- Khan, S.H.; Suriyaprabha, R.; Pathak, B.; Fulekar, M.H. Development of zinc oxide nanoparticle by sonochemical method and study of their physical and optical properties. AIP Conf. Proc. 2016, 1724, 020108. [Google Scholar] [CrossRef]
- Sadak, M.S.; Bakry, B.A. Zinc-oxide and nano ZnO oxide effects on growth, some biochemical aspects, yield quantity, and quality of flax (Linum uitatissimum L.) in absence and presence of compost under sandy soil. Bull. Natl. Res. Cent. 2020, 44, 98. [Google Scholar] [CrossRef]
- Zastrow, M.L.; Pecoraro, V.L. Designing hydrolytic zinc metalloenzymes. Biochemistry 2014, 53, 957–978. [Google Scholar] [CrossRef] [PubMed]
- Ghotekar, S.; Pansambal, S.; Bilal, M.; Pingale, S.S.; Oza, R. Environmentally friendly synthesis of Cr2O3 nanoparticles: Characterization, applications and future perspective—A review. Case Stud. Chem. Environ. Eng. 2021, 3, 100089. [Google Scholar] [CrossRef]
- Van Thuan, D.; Nguyen, T.L.; Pham Thi, H.H.; Thanh, N.T.; Ghotekar, S.; Sharma, A.K.; Binh, M.T.; Nga, T.T.; Pham, T.-D.; Cam, D.P. Development of Indium vanadate and Silver deposited on graphitic carbon nitride ternary heterojunction for advanced photocatalytic degradation of residual antibiotics in aqueous environment. Opt. Mater. 2022, 123, 111885. [Google Scholar] [CrossRef]
- Kalia, R.; Chauhan, A.; Verma, R.; Sharma, M.; Batoo, K.M.; Kumar, R.; Hussain, S.; Ghotekar, S.; Ijaz, M.F. Photocatalytic Degradation Properties of Li-Cr Ions Substituted CoFe2O4 Nanoparticles for Wastewater Treatment Application. Phys. Status Solidi A 2022, 2100539. [Google Scholar] [CrossRef]
- Pandit, C.; Roy, A.; Ghotekar, S.; Khusro, A.; Islam, M.N.; Emran, T.B.; Lam, S.E.; Khandaker, M.U.; Bradley, D.A. Biological agents for synthesis of nanoparticles and their applications. J. King Saud Univ. Sci. 2022, 34, 101869. [Google Scholar] [CrossRef]
- Dabhane, H.; Ghotekar, S.; Zate, M.; Kute, S.; Jadhav, G.; Medhane, V. Green synthesis of MgO nanoparticles using aqueous leaf extract of Ajwain (Trachyspermum ammi) and evaluation of their catalytic and biological activities. Inorg. Chem. Commun. 2022, 138, 109270. [Google Scholar] [CrossRef]
- Dabhane, H.; Ghotekar, S.; Tambade, P.; Pansambal, S.; Murthy, H.C.A.; Oza, R.; Medhane, V. A review on environmentally benevolent synthesis of CdS nanoparticle and their applications. Environ. Chem. Ecotoxicol. 2021, 3, 209–219. [Google Scholar] [CrossRef]
- Ghotekar, S. A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications. Asian J. Green Chem. 2019, 3, 187–200. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Nagore, P.; Ghotekar, S.; Mane, K.; Ghoti, A.; Bilal, M.; Roy, A. Structural Properties and Antimicrobial Activities of Polyalthia longifolia Leaf Extract-Mediated CuO Nanoparticles. BioNanoScience 2021, 11, 579–589. [Google Scholar] [CrossRef]
- Roy, A.; Singh, V.; Sharma, S.; Ali, D.; Azad, A.K.; Kumar, G.; Emran, T.B. Antibacterial and Dye Degradation Activity of Green Synthesized Iron Nanoparticles. J. Nanomater. 2022, 2022, 3636481. [Google Scholar] [CrossRef]
- Swati, R. Degradation of dyes using biologically synthesized silver and copper nanoparticles. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100278. [Google Scholar] [CrossRef]
- Alamdari, S.; Sasani Ghamsari, M.; Lee, C.; Han, W.; Park, H.-H.; Tafreshi, M.J.; Afarideh, H.; Ara, M.H.M. Preparation and Characterization of Zinc Oxide Nanoparticles Using Leaf Extract of Sambucus ebulus. Appl. Sci. 2020, 10, 3620. [Google Scholar] [CrossRef]
- Doğan, S.Ş.; Kocabaş, A. Green synthesis of ZnO nanoparticles with Veronica multifida and their antibiofilm activity. Hum. Exp. Toxicol. 2019, 39, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Arpita, R.; Navneeta, B. Silver nanoparticle synthesis from Plumbago zeylanica and its dye degradation activity. Bioinspired Biomim. Nanobiomater. 2019, 8, 130–140. [Google Scholar] [CrossRef]
- Roy, A.; Bharadvaja, N. Silver Nanoparticles Synthesis from a Pharmaceutically Important Medicinal Plant Plumbago Zeylanica. MOJ Bioequiv. Bioavailab. 2017, 3, 118–121. [Google Scholar] [CrossRef] [Green Version]
- Nemcek, L.; Sebesta, M.; Urik, M.; Bujdos, M.; Dobrocka, E.; Vavra, I. Impact of Bulk ZnO, ZnO Nanoparticles and Dissolved Zn on Early Growth Stages of Barley-A Pot Experiment. Plants 2020, 9, 1365. [Google Scholar] [CrossRef]
- Faizan, M.; Hayat, S.; Pichtel, J. Effects of Zinc Oxide Nanoparticles on Crop Plants: A Perspective Analysis. In Sustainable Agriculture Reviews 41: Nanotechnology for Plant Growth and Development; Hayat, S., Pichtel, J., Faizan, M., Fariduddin, Q., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 83–99. [Google Scholar] [CrossRef]
- Plaksenkova, I.; Kokina, I.; Petrova, A.; Jermalonoka, M.; Gerbreders, V.; Krasovska, M. The Impact of Zinc Oxide Nanoparticles on Cytotoxicity, Genotoxicity, and miRNA Expression in Barley (Hordeum vulgare L.) Seedlings. Sci. World J. 2020, 2020, 6649746. [Google Scholar] [CrossRef]
- Rajput, V.D.; Minkina, T.M.; Behal, A.; Sushkova, S.N.; Mandzhieva, S.; Singh, R.; Gorovtsov, A.; Tsitsuashvili, V.S.; Purvis, W.O.; Ghazaryan, K.A.; et al. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environ. Nanotechnol. Monit. Manag. 2018, 9, 76–84. [Google Scholar] [CrossRef]
- Modi, S.; Fulekar, M. Green Synthesis of Zinc Oxide Nanoparticles using Garlic skin extract and Its Characterization. J. Nanostruct. 2020, 10, 20–27. [Google Scholar]
- Jayarambabu, N. Germination and Growth Characteristics of Mungbean Seeds (Vigna radiata L.) affected by Synthesized Zinc Oxide Nanoparticles. Int. J. Curr. Eng. Technol. 2014, 4, 5. [Google Scholar]
- Talodthaisong, C.; Plaeyao, K.; Mongseetong, C.; Boonta, W.; Srichaiyapol, O.; Patramanon, R.; Kayunkid, N.; Kulchat, S. The Decoration of ZnO Nanoparticles by Gamma Aminobutyric Acid, Curcumin Derivative and Silver Nanoparticles: Synthesis, Characterization and Antibacterial Evaluation. Nanomaterials 2021, 11, 442. [Google Scholar] [CrossRef] [PubMed]
- Shreema, K.; Mathammal, R.; Kalaiselvi, V.; Vijayakumar, S.; Selvakumar, K.; Senthil, K. Green synthesis of silver doped zinc oxide nanoparticles using fresh leaf extract Morinda citrifolia and its antioxidant potential. Mater. Today Proc. 2021, 47, 126–2131. [Google Scholar] [CrossRef]
- Haque, M.J.; Bellah, M.M.; Hassan, M.R.; Rahman, S. Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic and optical properties. Nano Express 2020, 1, 010007. [Google Scholar] [CrossRef]
- Jan, H.; Shah, M.; Andleeb, A.; Faisal, S.; Khattak, A.; Rizwan, M.; Drouet, S.; Hano, C.; Abbasi, B.H. Plant-Based Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Aqueous Leaf Extract of Aquilegia pubiflora: Their Antiproliferative Activity against HepG2 Cells Inducing Reactive Oxygen Species and Other In Vitro Properties. Oxid. Med. Cell. Longev. 2021, 2021, 4786227. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Abbasi, B.A.; Yaseen, T.; Zahra, S.A.; Shahbaz, A.; Shah, S.A.; Uddin, S.; Ma, X.; Raouf, B.; Kanwal, S.; et al. Green synthesis of zinc oxide nanoparticles using Elaeagnus angustifolia L. leaf extracts and their multiple in vitro biological applications. Sci. Rep. 2021, 11, 20988. [Google Scholar] [CrossRef] [PubMed]
- Murali, M.; Kalegowda, N.; Gowtham, H.G.; Ansari, M.A.; Alomary, M.N.; Alghamdi, S.; Shilpa, N.; Singh, S.B.; Thriveni, M.C.; Aiyaz, M.; et al. Plant-Mediated Zinc Oxide Nanoparticles: Advances in the New Millennium towards Understanding Their Therapeutic Role in Biomedical Applications. Pharmaceutics 2021, 13, 1662. [Google Scholar] [CrossRef] [PubMed]
- Aldalbahi, A.; Alterary, S.; Ali Abdullrahman Almoghim, R.; Awad, M.A.; Aldosari, N.S.; Fahad Alghannam, S.; Nasser Alabdan, A.; Alharbi, S.; Ali Mohammed Alateeq, B.; Abdulrahman Al Mohsen, A.; et al. Greener Synthesis of Zinc Oxide Nanoparticles: Characterization and Multifaceted Applications. Molecules 2020, 25, 4198. [Google Scholar] [CrossRef]
- El-Belely, E.F.; Farag, M.M.S.; Said, H.A.; Amin, A.S.; Azab, E.; Gobouri, A.A.; Fouda, A. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Arthrospira platensis (Class: Cyanophyceae) and Evaluation of their Biomedical Activities. Nanomaterials 2021, 11, 95. [Google Scholar] [CrossRef]
- Rajendran, N.K.; George, B.P.; Houreld, N.N.; Abrahamse, H. Synthesis of Zinc Oxide Nanoparticles Using Rubus fairholmianus Root Extract and Their Activity against Pathogenic Bacteria. Molecules 2021, 26, 3029. [Google Scholar] [CrossRef]
- Savassa, S.M.; Duran, N.M.; Rodrigues, E.S.; de Almeida, E.; van Gestel, C.A.M.; Bompadre, T.F.V.; de Carvalho, H.W.P. Effects of ZnO Nanoparticles on Phaseolus vulgaris Germination and Seedling Development Determined by X-ray Spectroscopy. ACS Appl. Nano Mater. 2018, 1, 6414–6426. [Google Scholar] [CrossRef]
- Szollosi, R.; Molnar, A.; Kondak, S.; Kolbert, Z. Dual Effect of Nanomaterials on Germination and Seedling Growth: Stimulation vs. Phytotoxicity. Plants 2020, 9, 1745. [Google Scholar] [CrossRef]
- Hajra, A.; Mondal, N.K. Effects of ZnO and TiO2 nanoparticles on germination, biochemical and morphoanatomical attributes of Cicer arietinum L. Energy Ecol. Environ. 2017, 2, 277–288. [Google Scholar] [CrossRef] [Green Version]
- DalCorso, G.; Martini, F.; Fasani, E.; Manara, A.; Visioli, G.; Furini, A. Enhancement of Zn tolerance and accumulation in plants mediated by the expression of Saccharomyces cerevisiae vacuolar transporter ZRC1. Planta 2021, 253, 117. [Google Scholar] [CrossRef] [PubMed]
- Adrees, M.; Khan, Z.S.; Hafeez, M.; Rizwan, M.; Hussain, K.; Asrar, M.; Alyemeni, M.N.; Wijaya, L.; Ali, S. Foliar exposure of zinc oxide nanoparticles improved the growth of wheat (Triticum aestivum L.) and decreased cadmium concentration in grains under simultaneous Cd and water deficient stress. Ecotoxicol. Environ. Saf. 2021, 208, 111627. [Google Scholar] [CrossRef] [PubMed]
- Tondey, M.; Kalia, A.; Singh, A.; Dheri, G.S.; Taggar, M.S.; Nepovimova, E.; Krejcar, O.; Kuca, K. Seed Priming and Coating by Nano-Scale Zinc Oxide Particles Improved Vegetative Growth, Yield and Quality of Fodder Maize (Zea mays). Agronomy 2021, 11, 729. [Google Scholar] [CrossRef]
Sr.No | Parameter | Analysis Result | Quality |
---|---|---|---|
1 | Total nitrogen | 0.87% | high |
2 | Phosphorus (P2O5)Kg/Ac | 5 | low |
3 | Potassium (K2O) Kg/Ac | 365 | high |
4 | pH | 7.60 | normal |
5 | Conductivity | 1.35 | Salts are high |
6 | Sulfur (ppm) | 16.5 | Medium |
7 | Zn (ppm) | 4.20 | Medium |
8 | Fe (ppm) | 8.40 | Medium |
9 | Mn (ppm) | 29.1 | High |
10 | Cu (ppm) | 1.92 | High |
Treatment | Germination Index | Seed Germination % | Seedling Growth (cm) | Fresh Weight (gms) | Dry Weight (gms) | |||
---|---|---|---|---|---|---|---|---|
Root Length | Soot Length | Root | Soot | Root | Soot | |||
Control | 90 | 8.066 | 9.34 | 0.052 | 1.182 | 0.025 | 0.114 | |
50 ppm | 79.42 | 100 | 9.14 | 11.45 | 0.108 | 1.638 | 0.042 | 0.198 |
100 ppm | 76.49 | 100 | 9.49 | 12.8 | 0.066 | 1.215 | 0.024 | 0.122 |
150 ppm | 96.67 | 100 | 7.51 | 13.38 | 0.106 | 1.734 | 0.035 | 0.188 |
200 ppm | 101.95 | 100 | 7.12 | 15.88 | 0.056 | 1.596 | 0.021 | 0.150 |
400 ppm | 104.45 | 100 | 6.95 | 13.44 | 0.081 | 1.341 | 0.034 | 0.168 |
600 ppm | 105.67 | 100 | 6.87 | 12.42 | 0.091 | 1.625 | 0.029 | 0.215 |
800 ppm | 119.67 | 90 | 6.74 | 12.22 | 0.078 | 1.513 | 0.031 | 0.156 |
1000 ppm | 119.33 | 90 | 6.76 | 11.71 | 0.106 | 1.284 | 0.037 | 0.143 |
1200 ppm | 110.30 | 80 | 6.50 | 10.54 | 0.060 | 1.260 | 0.019 | 0.131 |
Treatment | Seed Germination % | Seedling Growth (cm) | Fresh Weight | Dry Weight | |||
---|---|---|---|---|---|---|---|
Root Length | Soot Length | Root | Soot | Root | Soot | ||
Control | 50 | 6.32 | 9.34 | 0.040 | 0.212 | 0.0114 | 0.048 |
50 ppm | 70 | 9.27 | 11.31 | 0.122 | 0.413 | 0.063 | 0.081 |
100 ppm | 70 | 11.07 | 13.8 | 0.097 | 0.617 | 0.059 | 0.109 |
150 ppm | 80 | 11.68 | 12.74 | 0.087 | 0.571 | 0.057 | 0.113 |
200 ppm | 80 | 11.3 | 11.66 | 0.158 | 0.695 | 0.078 | 0.106 |
400 ppm | 100 | 10.02 | 11.32 | 0.123 | 0.685 | 0.034 | 0.109 |
600 ppm | 100 | 9.96 | 11.3 | 0.127 | 0.588 | 0.042 | 0.107 |
800 ppm | 100 | 9.57 | 10.6 | 0.120 | 0.665 | 0.068 | 0.108 |
1000 ppm | 80 | 8.38 | 10 | 0.087 | 0.442 | 0.045 | 0.083 |
1200 ppm | 70 | 8.41 | 9.51 | 0.072 | 0.432 | 0.047 | 0.073 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modi, S.; Yadav, V.K.; Choudhary, N.; Alswieleh, A.M.; Sharma, A.K.; Bhardwaj, A.K.; Khan, S.H.; Yadav, K.K.; Cheon, J.-K.; Jeon, B.-H. Onion Peel Waste Mediated-Green Synthesis of Zinc Oxide Nanoparticles and Their Phytotoxicity on Mung Bean and Wheat Plant Growth. Materials 2022, 15, 2393. https://doi.org/10.3390/ma15072393
Modi S, Yadav VK, Choudhary N, Alswieleh AM, Sharma AK, Bhardwaj AK, Khan SH, Yadav KK, Cheon J-K, Jeon B-H. Onion Peel Waste Mediated-Green Synthesis of Zinc Oxide Nanoparticles and Their Phytotoxicity on Mung Bean and Wheat Plant Growth. Materials. 2022; 15(7):2393. https://doi.org/10.3390/ma15072393
Chicago/Turabian StyleModi, Shreya, Virendra Kumar Yadav, Nisha Choudhary, Abdullah M. Alswieleh, Anish Kumar Sharma, Abhishek Kumar Bhardwaj, Samreen Heena Khan, Krishna Kumar Yadav, Ji-Kwang Cheon, and Byong-Hun Jeon. 2022. "Onion Peel Waste Mediated-Green Synthesis of Zinc Oxide Nanoparticles and Their Phytotoxicity on Mung Bean and Wheat Plant Growth" Materials 15, no. 7: 2393. https://doi.org/10.3390/ma15072393
APA StyleModi, S., Yadav, V. K., Choudhary, N., Alswieleh, A. M., Sharma, A. K., Bhardwaj, A. K., Khan, S. H., Yadav, K. K., Cheon, J. -K., & Jeon, B. -H. (2022). Onion Peel Waste Mediated-Green Synthesis of Zinc Oxide Nanoparticles and Their Phytotoxicity on Mung Bean and Wheat Plant Growth. Materials, 15(7), 2393. https://doi.org/10.3390/ma15072393