Exploring the Properties of Micronized Natural Zeolitic Volcanic Tuff as Cosmetic Ingredient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Micronized Zeolite Preparation
2.2. Characterization
2.3. Stability Evaluation of Cosmetic Formulations Containing MZ
2.3.1. Composition of Cosmetic Formulations Containing MZ
2.3.2. Preliminary Stability Study
2.3.3. Accelerated Stability Study
2.3.4. Acceptance Criteria
2.3.5. Analysis of Cosmetic Formulations
3. Results and Discussion
3.1. RZ and MZ Characteristics
3.1.1. Trace Elements (Ni, Cr, Co, Cu, Zn, Cd, Pb and Hg) Concentrations
3.1.2. Structure of RZ and MZ Samples
3.1.3. Particle Size Distribution
3.2. Stability of Cosmetic Formulations Containing MZ
3.2.1. Analysis of Cosmetic Formulations
3.2.2. Preliminary Stability Study
3.2.3. Accelerated Stability Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hrachovcová, K.; Tišler, Z.; Svobodová, E.; Šafář, J. Modified alkali activated zeolite foams with improved textural and mechanical properties. Minerals 2020, 10, 483. [Google Scholar] [CrossRef]
- Król, M. Natural vs. synthetic zeolites. Crystals 2020, 10, 622. [Google Scholar] [CrossRef]
- Youssef, H.F.; Hegazy, W.H.; Abo-almaged, H.H. Preparation and characterization of micronized zeolite Na-A: Cytotoxic activity of silver exchanged form. J. Porous. Mater. 2015, 22, 1033–1041. [Google Scholar] [CrossRef]
- Kraljević Pavelić, S.; Simović Medica, J.; Gumbarević, D.; Filošević, A.; Pržulj, N.; Pavelić, K. Critical review on zeolite clinoptilolite safety and medical applications in vivo. Front. Pharmacol. 2018, 9, 1350. [Google Scholar] [CrossRef] [PubMed]
- Serati-Nouri, H.; Jafari, A.; Roshangar, L.; Dadashpour, M.; Pilehvar-Soltanahmadi, Y.; Zarghami, N. Biomedical applications of zeolite-based materials: A review. Mater. Sci. Eng. C. 2020, 116, 111225. [Google Scholar] [CrossRef]
- EFSA Panel on additives and products or substances used in animal feed. Scientific opinion on the safety and efficacy of clinoptilolite of sedimentary origin for all animal species. EFSA J. 2013, 11, 1–14. [Google Scholar]
- Cerri, G.; Farina, M.; Brundu, A.; Daković, A.; Giunchedi, P.; Gavini, E.; Rassu, G. Natural zeolites for pharmaceutical formulations: Preparation and evaluation of a clinoptilolite-based material. Microporous Mesoporous Mater. 2016, 223, 58–67. [Google Scholar] [CrossRef]
- Herceg, Z.; Lelas, V.; Brnčić, M.; Tripalo, B.; Ježek, D. Tribomechanical micronization and activation of whey protein concentrate and zeolite. Sadhana 2004, 29, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Herceg, Z.; Batur, V.; Režek Jambrak, A.; Vukušić, T.; Gmajnički, I.; Špoljarić, I. The effect of tribomechanical micronization and activation on rheological, thermophysical, and some physical properties of tapioca Starch. Int. J. Carbohydr. Chem. 2013, 2013, 657951. [Google Scholar] [CrossRef] [Green Version]
- Mastinu, A.; Kumar, A.; Maccarinelli, G.; Bonini, S.A.; Premoli, M.; Aria, F.; Gianoncell, A.; Memo, M. Zeolite clinoptilolite: Therapeutic virtues of an ancient mineral. Molecules 2019, 24, 1517. [Google Scholar] [CrossRef] [Green Version]
- Andrić, L.; Trumić, M.; Trumić, M.; Nikolić, V. Micronization of zeolite in vibration mill. Recycl. Sustain. Dev. 2018, 11, 63–71. [Google Scholar] [CrossRef]
- Pavelić, K.; Hadzija, M. Medical applications of zeolites, chapter 24. In Handbook of Zeolite Science and Technology, 1st ed.; Auerbach, S.M., Carrado, K.A., Dutta, P.K., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 1143–1174. [Google Scholar]
- Bacakova, L.; Vandrovcova, M.; Kopova, I.; Jirka, I. Applications of zeolites in biotechnology and medicine—A review. Biomater. Sci. 2018, 6, 974–989. [Google Scholar] [CrossRef]
- Borowska, S.; Brzóska, M.M. Metals in cosmetics: Implications for human health. J. Appl. Toxicol. 2015, 35, 551–572. [Google Scholar] [CrossRef] [PubMed]
- Arshad, H.; Zahid Mehmood, M.; Hussain Shah, M.; Mehmood Abbasi, A. Evaluation of heavy metals in cosmetic products and their health risk assessment. Saudi Pharm. J. 2020, 28, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.F.; Akhter, M.; Mazumder, B.; Ferdous, A.; Hossain, M.D.; Dafader, N.C.; Ahmed, F.T.; Kundu, S.K.; Taheri, T.; Atique Ullah, A.K.M. Assessment of some heavy metals in selected cosmetics commonly used in Bangladesh and human health risk. J. Anal. Sci. Technol. 2019, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Eur Lex. Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products (Text with EEA Relevance); Official Journal of the European Union: Luxembourg, 2009; Volume 27. [Google Scholar]
- Pinto, D.; Lameirão, F.; Delerue-Matos, C.; Rodrigues, F.; Costa, P. Characterization and stability of a formulation containing antioxidants-enriched Castanea sativa shells extract. Cosmetics 2021, 8, 49. [Google Scholar] [CrossRef]
- Rodrigues Ueoka, A.; Pedriali Moraes, C.A. Development and stability evaluation of liquid crystal-based formulations containing glycolic plant extracts and nano-actives. Cosmetics 2018, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Stephane, P. Stability of cosmetic formulations containing UV filters and preservatives, based on physical and chemical parameters, MOJ. Toxicol. 2015, 1, 12–21. [Google Scholar]
- Pesando, M.; Bolzon, V.; Bulfoni, M.; Nencioni, A.; Nencioni, E. Exploring the adsorption properties of zeolite in a new skin care formulation. Cosmetics 2022, 9, 26. [Google Scholar] [CrossRef]
- Ekpete, O.A.; Marcus, A.C.; Osi, V. Preparation and characterization of activated carbon obtained from plantain (Musa paradisiaca) Fruit Stem. J. Chem. 2017, 2017, 8635615. [Google Scholar] [CrossRef] [Green Version]
- US EPA. Cation-Exchange Capacity of Soils (Sodium Acetate). In US EPA Method 9081; US EPA: Washington, DC, USA, 1986. [Google Scholar]
- Senila, M.; Cadar, O.; Senila, L.; Hoaghia, A.; Miu, I. Mercury determination in natural zeolites samples by thermal decomposition atomic absorption spectrometry: Method validation in compliance with requirements for use as dietary supplements. Molecules 2019, 24, 4023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cadar, O.; Senila, M.; Hoaghia, M.A.; Scurtu, D.; Miu, I.; Levei, E.A. Effects of thermal treatment on natural clinoptilolite-rich zeolite behavior in simulated biological fluids. Molecules 2020, 25, 2570. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhou, S.; Li, L. Evaluation of pozzolanic activity of volcanic tuffs from Tibet, China. Adv. Cem. Res. 2017, 29, 137–146. [Google Scholar] [CrossRef]
- Vieira, R.P.; Ribeiro Fernandes, A.; Kaneko, T.M.; Consiglieri, V.O.; Pinto, C.A.S.O.; Pereira, C.S.C.; Baby, A.R.; Velasco, M.V.R. Physical and physicochemical stability evaluation of cosmetic formulations containing soybean extract fermented by Bifidobacterium animalis. Braz. J. Pharm. Sci. 2009, 45, 515–525. [Google Scholar] [CrossRef] [Green Version]
- Rocha, L.C.C.; Zuquette, L.V. Evaluation of Zeolite as a Potential Reactive Medium in a Permeable Reactive Barrier (PRB): Batch and Column Studies. Geosciences 2020, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Maicaneanu, A.; Bedelean, H.; Stanca, M. Zeolitii Naturali: Caracterizare si Aplicatii in Protectia Mediului; Presa Universitara Clujeana: Cluj-Napoca, Romania, 2008; pp. 118–119. [Google Scholar]
- Stylianou, M.; Inglezakis, V.; Agapiou, A.; Itskos, G.; Jetybayeva, A.; Loizidou, M. A comparative study on phyllosilicate and tectosilicate mineral structural properties. Desalin. Water Treat. 2018, 112, 119–146. [Google Scholar] [CrossRef] [Green Version]
- Rumbo Morales, J.Y.; Perez Vidal, A.F.; Ortiz Torres, G.; Salas Villalobo, A.U.; Sorcia Vázquez, F.d.J.; Brizuela Mendoza, J.A.; De-la-Torre, M.; Valdez Martínez, J.S. Adsorption and Separation of the H2O/H2SO4 and H2O/C2H5OH Mixtures: A Simulated and Experimental Study. Processes 2020, 8, 290. [Google Scholar] [CrossRef] [Green Version]
- Aloulou, H.; Bouhamed, H.; Ghorbel, A.; Amar, R.B.; Khemakhem, S. Elaboration and characterization of ceramic microfiltration membranes from natural zeolite: Application to the treatment of cuttlefish effluent. Desalin. Water Treat. 2017, 95, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Măicăneanu, S.A.; Bedelean, H. Na+-NH4+ cation exchange study on treated zeolitic volcanic tuff in fixed bed column. Studia UBB Chemia. 2020, 65, 89–100. [Google Scholar] [CrossRef]
- Arcoya, A.; Gonzalez, J.A.; Travieso, N.; Seoane, X.L. Physicochemical and catalytic properties of a modified natural clinoptilolite. Clay Miner. 1994, 29, 123–131. [Google Scholar] [CrossRef]
- Akkoca, D.B.; Yilgin, M.; Ural, M.; Alcin, H.; Mergen, A. Hydrothermal and thermal treatment of natural clinoptilolite zeolite from Bigadic, Turkey: An experimental study. Geochem. Int. 2013, 51, 495–504. [Google Scholar] [CrossRef]
- Yokoi, T. Characterization of zeolites by advanced SEM/STEM techniques. SI News. 2016, 7, 17–23. [Google Scholar]
- Stocker, K.; Ellersdorfer, M.; Lehner, M.; Raith, J.G. Characterization and utilization of natural zeolites in technical applications. Berg Huettenmaenn Mon. 2017, 162, 142–147. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, D.; Bu, H.; Deng, L.; Liu, H.; Yuan, P.; Du, P.; Song, H. XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review. Solid Earth Sci. 2018, 3, 16–29. [Google Scholar] [CrossRef]
pH | CEC | ρ | K2O | MnO | CaO | MgO | Fe2O3 | SiO2 | Al2O3 | Na2O | Si/Al | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
meq/q | g/mL | wt. % | ||||||||||
RZ S1 | 9.79 | 1.18 | 0.8 | 1.85 | 0.04 | 6.25 | 0.79 | 1.94 | 59.07 | 10.65 | 1.43 | 4.89 |
MZ S1 | 9.61 | 1.60 | 1.1 | 2.26 | 0.02 | 3.47 | 0.54 | 1.39 | 65.09 | 11.04 | 1.66 | 5.20 |
RZ S2 | 9.35 | 1.38 | 0.8 | 1.73 | 0.10 | 3.19 | 0.66 | 1.25 | 64.24 | 12.39 | 0.50 | 4.57 |
MZ S2 | 9.11 | 1.54 | 1.1 | 2.59 | 0.03 | 4.34 | 0.92 | 1.48 | 65.30 | 10.79 | 0.72 | 5.34 |
RZ S3 | 9.32 | 1.48 | 1.0 | 1.15 | 0.05 | 3.96 | 0.81 | 2.43 | 65.85 | 11.46 | 0.70 | 5.06 |
MZ S3 | 9.24 | 1.47 | 1.1 | 1.31 | 0.09 | 4.45 | 0.94 | 2.58 | 62.66 | 11.98 | 0.78 | 4.61 |
Samples | Ni | Cr | Co | Cu | Zn | Cd | Pb | Hg |
---|---|---|---|---|---|---|---|---|
RZ S1 | 2.5 | 2.9 | <1.0 | 27.9 | 64.1 | <1.0 | 21.8 | <0.005 |
MZ S1 | 2.6 | 4.1 | <1.0 | 8.4 | 39.1 | <1.0 | 8.7 | <0.005 |
RZ S2 | 3.6 | 2.1 | 1.1 | 10.2 | 19.8 | <1.0 | 28.5 | <0.005 |
MZ S2 | 3.6 | 5.4 | <1.0 | 9.2 | 15.3 | <1.0 | 8.4 | <0.005 |
RZ S3 | 2.1 | <1.0 | <1.0 | 7.9 | 14.0 | <1.0 | <1.0 | <0.005 |
MZ S3 | 10.7 | 11.1 | 2.9 | 9.7 | 15.5 | <1.0 | 18.4 | <0.005 |
Samples | >2000 | 1000–2000 | 500–1000 | 250–500 | 125–250 | 100–125 | 63–100 | 43–63 | 20–43 | 0–20 |
---|---|---|---|---|---|---|---|---|---|---|
% | ||||||||||
RZ S1 | 58.90 | 30.40 | 7.10 | 1.40 | <1.0 | <1.0 | <1.0 | - | - | - |
MZ S1 | - | - | - | 2.97 | 15.19 | 4.80 | 9.96 | 25.58 | 40.39 | 1.11 |
RZ S2 | 48.60 | 50.50 | <1.0 | - | - | - | - | - | - | - |
MZ S2 | - | - | - | 3.43 | 15.12 | 3.72 | 10.42 | 9.41 | 56.74 | 1.15 |
RZ S3 | <1.0 | 17.30 | 24.20 | 15.20 | 26.10 | 4.90 | 8.40 | 2.90 | <1.0 | - |
MZ S3 | - | 2.67 | 12.47 | 11.68 | 14.58 | 4.65 | 18.77 | 13.01 | 22.18 | - |
Formulations | pH | Drying Time | Cr | Cu | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|
min | mg/kg | ||||||
MZ S1 5% 20–43 µm | 4.4 | 34.0 | 0.17 | <0.10 | 1.40 | 18.08 | 1.80 |
MZ S1 5% 43–63 µm | 4.3 | 33.0 | <0.10 | 0.15 | 1.82 | 16.35 | 3.92 |
MZ S1 5% 63–100 µm | 4.2 | 32.5 | 2.11 | 0.39 | 1.84 | 2.58 | 2.07 |
MZ S1 5% 100–125 µm | 4.2 | 31.4 | 0.98 | 0.21 | 1.30 | 2.04 | 1.09 |
MZ S1 5% 125–250 µm | 4.2 | 27.0 | 0.85 | 0.33 | 0.78 | 1.71 | 2.06 |
MZ S1 5% 250–500 µm | 4.2 | 36.0 | 0.26 | 0.40 | 0.46 | 0.94 | 1.34 |
MZ S2 5% 20–43 µm | 4.3 | 33.4 | 0.40 | 0.50 | 1.52 | 14.57 | 2.01 |
MZ S2 5% 43–63 µm | 4.2 | 33.3 | 0.18 | 0.51 | 1.09 | 4.47 | 0.94 |
MZ S2 5% 63–100 µm | 4.2 | 33.3 | <0.10 | 0.18 | 2.28 | 2.04 | 1.10 |
MZ S2 5% 100–125 µm | 4.2 | 33.1 | 0.95 | 0.27 | 0.68 | 1.86 | 0.68 |
MZ S2 5% 125–250 µm | 4.2 | 32.3 | 1.89 | 0.47 | 1.55 | 2.05 | 1.89 |
MZ S2 5% 250–500 µm | 4.3 | 35.0 | 0.51 | 0.74 | 0.69 | 1.26 | 1.65 |
MZ S3 5% 20–43 µm | 4.4 | 35.6 | 2.59 | 0.54 | 1.63 | 16.13 | 1.75 |
MZ S3 5% 43–63 µm | 4.3 | 35.4 | 0.47 | 0.42 | 0.85 | 2.25 | 3.54 |
MZ S3 5% 63–100 µm | 4.3 | 35.0 | 1.32 | 0.39 | 0.71 | 3.96 | 1.03 |
MZ S3 5% 100–125 µm | 4.2 | 32.0 | 0.18 | 0.41 | 0.92 | 1.48 | 1.09 |
MZ S3 5% 125–250 µm | 4.2 | 30.0 | 0.19 | 0.38 | 1.53 | 1.78 | 3.00 |
MZ S3 1% 250–500 µm | 4.2 | 36.0 | 0.50 | 0.36 | 1.05 | 0.93 | 0.74 |
Test | Aspect | Color | Odor | Application Touch | pH | |
---|---|---|---|---|---|---|
MZ S1 5% 100–125 µm | C 1000 rpm, 30 min | M | N | N | A | 4.3 |
C 2000 rpm, 30 min | M | N | N | A | 4.3 | |
C 3000 rpm, 30 min | M | N | N | A | 4.3 | |
TS 40 °C, 30 min | N | N | N | A | 4.2 | |
TS 60 °C, 30 min | M | N | N | A | 4.2 | |
TS 80 °C, 30 min | M | N | N | A | 4.3 | |
L | M | N | N | A | 4.6 | |
MZ S1 5% 125–250 µm | C 1000 rpm/30 min | M | N | N | A | 4.3 |
C 2000 rpm/30 min | M | N | N | A | 4.3 | |
C 3000 rpm/30 min | M | N | N | A | 4.3 | |
TS 40 °C, 30 min | N | N | N | A | 4.3 | |
TS 60 °C, 30 min | M | N | N | A | 4.3 | |
TS 80 °C, 30 min | M | N | N | A | 4.3 | |
L | M | N | N | A | 4.6 |
Test | Aspect | Color | Odor | Application Touch | pH | |
---|---|---|---|---|---|---|
MZ S1 5% 100–125 µm | LT day 15 | N | N | N | A | 4.3 |
LT day 30 | N | N | N | A | 4.3 | |
LT day 60 | N | N | N | A | 4.3 | |
F day 15 | N | N | N | A | 4.3 | |
F day 30 | N | N | N | A | 4.3 | |
F day 60 | N | N | N | A | 4.3 | |
RT day 15 | N | N | N | A | 4.3 | |
RT day 30 | N | N | N | A | 4.3 | |
RT day 60 | N | N | N | A | 4.3 | |
F/D | M | N | N | A | 4.3 | |
O 45 °C | M | M | N | A | 4.6 | |
MZ S1 5% 125–250 µm | LT day 15 | N | N | N | A | 4.3 |
LT day 30 | N | N | N | A | 4.3 | |
LT day 60 | N | N | N | A | 4.3 | |
F day 15 | N | N | N | A | 4.3 | |
F day 30 | N | N | N | A | 4.3 | |
F day 60 | N | N | N | A | 4.3 | |
RT day 15 | N | N | N | A | 4.3 | |
RT day 30 | N | N | N | A | 4.3 | |
RT day 60 | N | N | N | A | 4.3 | |
F/D | M | N | N | A | 4.3 | |
O 45 °C | M | M | N | A | 4.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neag, E.; Stupar, Z.; Torok, A.I.; Surupaceanu, I.; Senila, M.; Cadar, O. Exploring the Properties of Micronized Natural Zeolitic Volcanic Tuff as Cosmetic Ingredient. Materials 2022, 15, 2405. https://doi.org/10.3390/ma15072405
Neag E, Stupar Z, Torok AI, Surupaceanu I, Senila M, Cadar O. Exploring the Properties of Micronized Natural Zeolitic Volcanic Tuff as Cosmetic Ingredient. Materials. 2022; 15(7):2405. https://doi.org/10.3390/ma15072405
Chicago/Turabian StyleNeag, Emilia, Zamfira Stupar, Anamaria Iulia Torok, Ionut Surupaceanu, Marin Senila, and Oana Cadar. 2022. "Exploring the Properties of Micronized Natural Zeolitic Volcanic Tuff as Cosmetic Ingredient" Materials 15, no. 7: 2405. https://doi.org/10.3390/ma15072405
APA StyleNeag, E., Stupar, Z., Torok, A. I., Surupaceanu, I., Senila, M., & Cadar, O. (2022). Exploring the Properties of Micronized Natural Zeolitic Volcanic Tuff as Cosmetic Ingredient. Materials, 15(7), 2405. https://doi.org/10.3390/ma15072405