Biomineralisation to Increase Earth Infrastructure Resilience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil
2.2. Binders
2.2.1. Cement
2.2.2. Lime
2.3. Mix Design
2.4. Methods for Testing
3. Results and Discussion
3.1. Bulk Density
3.2. Water Absorption via Capillary
3.3. SEM/EDS
3.4. Adsorption and Desorption of Water Vapour
- ma = Mass of mortar at end of moisture adsorption stage (g)
- md = Mass of mortar at end of moisture desorption stage (g)
- A = Exposed surface area of the mortar (m2)
- Δφ = RH difference between adsorption and desorption stage (%)
3.5. Compressive and Three-Point Flexural Strength
3.6. Open Porosity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kulshreshtha, Y.; Mota, N.; Jagadish, K.S.; Bredenoord, J.; Vardon, P.; van Loosdrecht, M.C.; Jonkers, H. The potential and current status of earthen material for low-cost housing in rural India. Constr. Build. Mater. 2020, 247, 118615. [Google Scholar] [CrossRef]
- UK’s Third Climate Change Risk Assessment (CCRA3), UK Climate Change Risk Assessment 2021: Independent Assessment of UK Climate Risk 2021. Available online: https://www.theccc.org.uk/publication/independent-assessment-of-uk-climate-risk/ (accessed on 3 March 2022).
- Van den Berg, R.D.; Naidoo, I.; Tamondong, S.D. (Eds.) Evaluation for Agenda 2030: Providing Evidence on Progress and Sustainability; IDEAS: Exeter, UK, 2017. [Google Scholar]
- Losini, A.; Grillet, A.; Bellotto, M.; Woloszyn, M.; Dotelli, G. Natural additives and biopolymers for raw earth construction stabilization—A review. Constr. Build. Mater. 2021, 304, 124507. [Google Scholar] [CrossRef]
- Morel, J.-C.; Charef, R.; Hamard, E.; Fabbri, A.; Beckett, C.; Bui, Q.-B. Earth as construction material in the circular economy context: Practitioner perspectives on barriers to overcome. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200182. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, A.; Aubert, J.-E.; Bras, A.A.; Faria, P.; Gallipoli, D.; Goffart, J.; McGregor, F.; Perlot-Bascoules, C.; Soudani, L. Hygrothermal and Acoustic Assessment of Earthen Materials. In Testing and Characterisation of Earth-Based Building Materials and Elements; RILEM State-of-the-Art Reports; Fabbri, A., Morel, J.C., Aubert, J.E., Bui, Q.B., Gallipoli, D., Reddy, B.V., Eds.; Springer: Cham, Switzerland, 2022; Volume 35. [Google Scholar]
- Fabbri, A.; Morel, J.-C.; Gallipoli, D. Assessing the performance of earth building materials: A review of recent developments. RILEM Tech. Lett. 2018, 3, 46–58. [Google Scholar] [CrossRef]
- Faria, P.; Santos, T.; Aubert, J.-E. Experimental Characterization of an Earth Eco-Efficient Plastering Mortar. J. Mater. Civ. Eng. 2016, 28, 04015085. [Google Scholar] [CrossRef]
- Hall, M.; Allinson, D. Analysis of the hygrothermal functional properties of stabilised rammed earth materials. Build. Environ. 2009, 44, 1935–1942. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.; Allinson, D. Assessing the effects of soil grading on the moisture content-dependent thermal conductivity of stabilised rammed earth materials. Appl. Therm. Eng. 2009, 29, 740–747. [Google Scholar] [CrossRef]
- Laborel-Préneron, A.; Aubert, J.E.; Magniont, C.; Tribout, C.; Bertron, A. Plant aggregates and fibers in earth con-struction materials: A review. Constr. Build. Mater. 2016, 111 (Suppl. C), 719–734. [Google Scholar] [CrossRef]
- Mcgregor, F.; Heath, A.; Fodde, E.; Shea, A. Conditions affecting the moisture buffering measurement performed on compressed earth blocks. Build. Environ. 2014, 75, 11–18. [Google Scholar] [CrossRef] [Green Version]
- McGregor, F.; Heath, A.; Maskell, D.; Fabbri, A.; Morel, J.-C. A review on the buffering capacity of earth building materials. Proc. Inst. Civ. Eng.-Constr. Mater. 2016, 169, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Melià, P.; Ruggieri, G.; Sabbadini, S.; Dotelli, G. Environmental impacts of natural and conventional building materials: A case study on earth plasters. J. Clean. Prod. 2014, 80, 179–186. [Google Scholar] [CrossRef]
- Sujatha, E.R.; Saisree, S. Geotechnical behaviour of guar gum-treated soil. Soils Found. 2019, 59, 2155–2166. [Google Scholar] [CrossRef]
- Bras, A.A.; Addo, I.A.; Beckett, C.T.; Yakubu, I.; Owusu-Nimo, F.; Gagnon, A.; Arora, M.; Huang, Y. Biological methods to increase housing resilience to flooding. In Proceedings of the World Resources Forum Conference, Online, 12–14 October 2021. [Google Scholar]
- Canakci, H.; Sidik, W.; Kilic, I.H. Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils Found. 2015, 55, 1211–1221. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, V.; Chu, J. Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev. Environ. Sci. Bio/Technol. 2008, 7, 139–153. [Google Scholar] [CrossRef]
- Van der Star, W.; Rossum, W.V.W.-V.; van Paassen, L.; van Baalen, L.; van Zwieten, G. Stabilization of gravel deposits using microorganisms. In Proceedings of the 15th European Conference on Soil Mechanics and Geotechnical Engineering, Athens, Greece, 5–9 October 2011. [Google Scholar]
- Martinez, B.C.; DeJong, J.T.; Ginn, T.R.; Montoya, B.M.; Barkouki, T.H.; Hunt, C.; Tanyu, B.; Major, D. Experimental Optimization of Microbial-Induced Carbonate Precipitation for Soil Improvement. J. Geotech. Geoenviron. Eng. 2013, 139, 587–598. [Google Scholar] [CrossRef]
- Romano, A.; Mohammed, H.; de Sande, V.T.; Bras, A. Sustainable bio-based earth mortar with self-healing capacity. Proc. Inst. Civ. Eng.-Constr. Mater. 2021, 174, 3–12. [Google Scholar] [CrossRef]
- Tayebani, B.; Mostofinejad, D. Self-healing bacterial mortar with improved chloride permeability and electrical resistance. Constr. Build. Mater. 2019, 208, 75–86. [Google Scholar] [CrossRef]
- Tittelboom, K.; Belie, N. Self-Healing in Cementitious Materials—A Review. Materials 2013, 6, 2182–2217. [Google Scholar] [CrossRef] [Green Version]
- Ammari, A.; Bouassria, K.; Zakham, N.; Cherraj, M.; Bouabid, H.; D’ouazzane, S. Durability of the earth mortar: Physico-chemical and mineralogical characterization for the reduction of the capillary rise. MATEC Web Conf. 2018, 149, 01024. [Google Scholar] [CrossRef]
- Chabriac, P.-A.; Morel, J.-C.; Fabbri, A.; Blanc-Gonnet, J.; Hans, S. A case study of the hygrothermal behaviour of rammed earth building. In Proceedings of the 8th Conference on Sustainable Development of Energy, Water and Environment Systems, Dubrovnik, Croatia, 22–27 September 2013. [Google Scholar]
- Eid, J. New construction material based on raw earth: Cracking mechanisms, corrosion phenomena and physico-chemical interactions. Eur. J. Environ. Civ. Eng. 2018, 22, 1522–1537. [Google Scholar] [CrossRef]
- Chou, C.-W.; Seagren, E.A.; Aydilek, A.H.; Lai, M. Biocalcification of Sand through Ureolysis. J. Geotech. Geoenviron. Eng. 2011, 137, 1179–1189. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Han, Y.; Ma, W.; Han, H.; Zhu, H.; Xu, C.; Li, K.; Wang, D. Enhanced nitrogen removal from coal gasification wastewater by simultaneous nitrification and denitrification (SND) in an oxygen-limited aeration sequencing batch biofilm reactor. Bioresour. Technol. 2017, 244, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-G.; Chang, I.; Lee, M.; Lee, J.-H.; Han, J.-T.; Kwon, T.-H. Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers. Constr. Build. Mater. 2020, 246, 118415. [Google Scholar] [CrossRef]
- Sharma, G.; Sharma, S.; Kumar, A.; Al-Muhtaseb, A.H.; Naushad, M.; Ghfar, A.A.; Mola, G.T.; Stadler, F.J. Guar gum and its composites as potential materials for diverse applications: A review. Carbohydr. Polym. 2018, 199, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Larson, S.L.; Newman, J.K.; Griggs, C.S.; Beverly, M.; Nestler, C.C. Biopolymers as an Alternative to Petroleum-Based Polymers for Soil Modification; ESTCP ER-0920: Treat-ability Studies; Engineer Research and Development Center Vicksburg MS Environmental Lab, Defense Technical Information Center: Fort Belvoir, VA, USA, 2012. [Google Scholar]
- Nakamatsu, J.; Kim, S.; Ayarza, J.; Ramírez, E.; Elgegren, M.; Aguilar, R. Eco-friendly modification of earthen construction with carrageenan: Water durability and mechanical assessment. Constr. Build. Mater. 2017, 139, 193–202. [Google Scholar] [CrossRef]
- Mohammed, H.; Giuntini, F.; Sadique, M.; Shaw, A.; Bras, A. Polymer modified concrete impact on the durability of infrastructure exposed to chloride environments. Constr. Build. Mater. 2021, 317, 125771. [Google Scholar] [CrossRef]
- Chromatrography Today. Available online: https://www.chromatographytoday.com/news/hplc-uhplc/31/breaking-news/adsorption-absorption-and-desorption-whats-the-difference/31397#.Yi8sacWJAdE.link (accessed on 14 January 2022).
- Romano, A.; Bras, A.; Grammatikos, S.; Shaw, A.; Riley, M. Dynamic behaviour of bio-based and recycled materials for indoor environmental comfort. Constr. Build. Mater. 2019, 211, 730–743. [Google Scholar] [CrossRef] [Green Version]
- Romano, A.; Grammatikos, S.; Riley, M.; Bras, A. Physicochemical characterisation of bio-based insulation to explain their hygrothermal behaviour. Constr. Build. Mater. 2020, 258, 120163. [Google Scholar] [CrossRef]
- Rode, C.; Peuhkuri, R.H.; Hansen, K.K.; Time, B.; Svennberg, K.; Arfvidsson, J.; Ojanen, T. NORDTEST Project on Moisture Buffer Value of Materials. In AIVC 26th Conference: Ventilation in Relation to the Energy Performance of Buildings. Air Infiltration and Ventilation; INIVE EEIG: Zaventem, Belgium, 2005; pp. 47–52. [Google Scholar]
- Hunkeler, F. Corrosion in reinforced concrete: Processes and mechanisms. Corros. Reinf. Concr. Struct. 2005, 1–45. [Google Scholar] [CrossRef]
- Ghosh, S.; Biswas, M.; Chattopadhyay, B.; Mandal, S. Microbial activity on the microstructure of bacteria modified mortar. Cem. Concr. Compos. 2009, 31, 93–98. [Google Scholar] [CrossRef]
- Dupuis, R.; Pellenq, R.J.-M.; Champenois, J.-B.; Poulesquen, A. Dissociation Mechanisms of Dissolved Alkali Silicates in Sodium Hydroxide. J. Phys. Chem. C 2020, 124, 8288–8294. [Google Scholar] [CrossRef] [Green Version]
- Gavali, H.R.; Bras, A.; Faria, P.; Ralegaonkar, R. Development of sustainable alkali-activated bricks using industrial wastes. Constr. Build. Mater. 2019, 215, 180–191. [Google Scholar] [CrossRef]
- Benmore, C.; Monteiro, P.J. The structure of alkali silicate gel by total scattering methods. Cem. Concr. Res. 2010, 40, 892–897. [Google Scholar] [CrossRef]
- Kirkpatrick, R.J.; Kalinichev, A.G.; Hou, X.; Struble, L. Experimental and molecular dynamics modeling studies of interlayer swelling: Water incorporation in kanemite and ASR gel. Mater. Struct. 2005, 38, 449–458. [Google Scholar] [CrossRef]
- Song, F.; Koo, H.; Ren, D. Effects of Material Properties on Bacterial Adhesion and Biofilm Formation. J. Dent. Res. 2015, 94, 1027–1034. [Google Scholar] [CrossRef]
- Teughels, W.; Van Assche, N.; Sliepen, I.; Quirynen, M. Effect of material characteristics and/or surface topography on biofilm development. Clin. Oral Implant. Res. 2006, 17, 68–81. [Google Scholar] [CrossRef]
- Cornell University Agronomy Fact Sheet #22: Cation Exchange Capacity (CEC). Available online: http://nmsp.cals.cornell.edu/publications/factsheets/factsheet22.pdf (accessed on 14 January 2022).
- Landrou, G.; Brumaud, C.; Habert, G. Clay particles as binder for earth buildings materials: A fresh look into rheology of dense clay suspensions. EPJ Web Conf. 2017, 140, 13010. [Google Scholar] [CrossRef] [Green Version]
- Van der Bergh, J.M.; Miljević, B.; Šovljanski, O.; Vučetić, S.; Markov, S.; Ranogajec, J.; Bras, A. Preliminary approach to bio-based surface healing of structural repair cement mortars. Constr. Build. Mater. 2020, 248, 118557. [Google Scholar] [CrossRef]
Mortar | Lime | Earth | Sand |
---|---|---|---|
Earth-based | 1 | 0.1 | 8.6 |
Cement | Sand | ||
Cement-based | 1 | 3.7 |
Tests Performed | Test in conformity with Standard | Picture |
---|---|---|
Bulk Density | EN 1015-6 | |
Compressive strength | EN 826 and EN 1015-11 | |
Three-point flexural strength | EN 12089 | |
Porosity | EN 1936 | |
Water absorption via capillary | EN 1015-18 and EN 15801 | |
Scanning electron microscopy coupled energy-dispersive X-ray spectroscopy (SEM-EDS) | FEI Inspect S SEM variable vacuum. Kv range 0.1–30 kv used | |
Moisture Buffering Volume | NORD TEST/ISO 21453 |
CaCO3 | Ca | O | Si | K | ||||
---|---|---|---|---|---|---|---|---|
Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | |
Cement Plain Average | 24.0 | 13.0 | 51.1 | 69.2 | 15.3 | 11.8 | 1.6 | 0.9 |
Cem+Bio Average | 33.1 | 18.0 | 52.6 | 71.6 | 9.4 | 7.3 | 0.5 | 0.3 |
CaCO3 | Ca | O | Si | K | ||||
---|---|---|---|---|---|---|---|---|
Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | Weight (%) | Atomic (%) | |
Earth Plain Average | 15.8 | 9.4 | 40.2 | 59.5 | 30.5 | 25.7 | 0.8 | 0.5 |
Earth+Bio Average | 31.8 | 16.7 | 58.2 | 76.4 | 5.2 | 3.9 | 2.1 | 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bras, A.; Mohammed, H.; Romano, A.; Nakouti, I. Biomineralisation to Increase Earth Infrastructure Resilience. Materials 2022, 15, 2490. https://doi.org/10.3390/ma15072490
Bras A, Mohammed H, Romano A, Nakouti I. Biomineralisation to Increase Earth Infrastructure Resilience. Materials. 2022; 15(7):2490. https://doi.org/10.3390/ma15072490
Chicago/Turabian StyleBras, Ana, Hazha Mohammed, Abbie Romano, and Ismini Nakouti. 2022. "Biomineralisation to Increase Earth Infrastructure Resilience" Materials 15, no. 7: 2490. https://doi.org/10.3390/ma15072490
APA StyleBras, A., Mohammed, H., Romano, A., & Nakouti, I. (2022). Biomineralisation to Increase Earth Infrastructure Resilience. Materials, 15(7), 2490. https://doi.org/10.3390/ma15072490