Optimization of Alumina Ceramics Corrosion Resistance in Nitric Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Al2O3 Ceramics
2.2. Characterisation of Alumina Ceramics
2.3. Corrosion Monitoring of Alumina in Aqueous HNO3 Solution
2.4. Design of Experiments of Monitoring Alumina Corrosion Resistance
3. Results and Discussion
3.1. Properties of Alumina
3.2. Modeling of the Amount of Eluted Ions and Alumina Density
3.3. Optimization and Verification of Alumina Ceramics Corrosion Resistance in Nitric Acid
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, M.; Chang, Y.; Bermejo, R.; Jiang, G.; Sun, Y.; Wu, J.; Yang, B.; Cao, W. Improved Fracture Behavior and Mechanical Properties of Alumina Textured Ceramics. Mater. Lett. 2018, 221, 252–255. [Google Scholar] [CrossRef]
- Schacht, M.; Boukis, N.; Dinjus, E. Corrosion of Alumina Ceramics in Acidic Aqueous Solutions at High Temperatures and Pressures. J. Mater. Sci. 2000, 5, 6251–6258. [Google Scholar] [CrossRef]
- Ćurković, L.; Fudurić Jelača, M. Dissolution of Alumina Ceramics in HCl Aqueous Solution. Ceram. Int. 2009, 35, 2041–2045. [Google Scholar] [CrossRef]
- Sato, T.; Sato, S.; Okuwaki, A. Corrosion Behavior of Alumina Ceramics in Caustic Alkaline Solutions at High Temperatures. J. Am. Ceram. Soc. 1991, 84, 3081–3084. [Google Scholar] [CrossRef]
- Gutiérrez, A.V.; Cuevas, J.L.; Ángeles, A.G.; Pilalua, N. Addition of Ceramics Materials to Improve the Corrosion Resistance of Alumina Refractories. SN Appl. Sci. 2019, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Žmak, I.; Ćorić, D.; Mandić, V.; Ćurković, L. Hardness and Indentation Fracture Toughness of Slip Cast Alumina and Alumina-Zirconia Ceramics. Materials 2020, 13, 122. [Google Scholar] [CrossRef] [Green Version]
- Medvedovski, E. Influence of Corrosion and Mechanical Loads on Advanced Ceramic Components. Ceram. Int. 2013, 39, 2723–2741. [Google Scholar] [CrossRef]
- White, W.B. Theory of Corrosion of Glass and Ceramics. In Corrosion of Glass, Ceramics and Superconductors; Noyes Publications: Park Ridge, NJ, USA, 1992; pp. 2–28. [Google Scholar]
- Wu, T.; Zhou, J.; Wu, B. Effect of Y2O3 on Acid Resistance of Alumina Ceramic. Ceram. Int. 2017, 43, 5102–5107. [Google Scholar] [CrossRef]
- Gavrilov, K.L.; Bennison, S.J.; Mikeska, K.R.; Levi-Setti, R. Grain Boundary Chemistry of Alumina by High-Resolution Imaging SIMS. Acta Mater. 1999, 47, 4031–4039. [Google Scholar] [CrossRef]
- Mikeska, K.R.; Bennison, S.J.; Grise, S.L. Corrosion of Ceramics in Aqueous Hydrofluoric Acid. J. Am. Ceram. Soc. 2000, 83, 1160–1164. [Google Scholar] [CrossRef]
- McCauley, R.A. Corrosion of Ceramic and Composite Materials, 2nd ed.; Philip, A., Schweitzer, P.E., Eds.; Marcel Dekker Inc.: New York, NY, USA, 2005; ISBN 0824753666. [Google Scholar]
- Miyashita, K.; Yoshida, K.; Yano, T.; Matsukura, K.; Kishi, Y. Corrosion Behavior of Yttrium Oxyfluoride Ceramics in HCl, HNO3 and HF Solutions at Room Temperature. Jpn. J. Appl. Phys. 2020, 59, SJJB02. [Google Scholar] [CrossRef]
- Herrmann, M.; Schilm, J. Shape Dependence of Corrosion Kinetics of Si3N4 Ceramics in Acids. Ceram. Int. 2009, 35, 797–802. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Z.; Fu, Y.; Huang, S.; Zhao, S.; Zhang, P. Corrosion Behavior of ZrC—SiC Composite Ceramics in LiF—NaF—KF Molten Salt at High Temperatures. Ceram. Int. 2015, 41, 12996–13005. [Google Scholar] [CrossRef]
- Ćurković, L.; Fudurić Jelača, M.; Kurajica, S. Corrosion Behavior of Alumina Ceramics in Aqueous HCl and H2SO4 Solutions. Corros. Sci. 2008, 50, 872–878. [Google Scholar] [CrossRef]
- Börensen, C.; Kirchner, U.; Scheer, V.; Vogt, R.; Zellner, R. Mechanism and Kinetics of the Reactions of NO2 or HNO3 with Alumina as a Mineral Dust Model Compound. J. Phys. Chem. A 2000, 104, 5036–5045. [Google Scholar] [CrossRef]
- Bennett, P. Corrosion Resistance of Ceramic Materials to HCl, HNO and H2S04. Ceram. Eng. Sci. Proc. 1986, 7, 301–313. [Google Scholar]
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.P.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; et al. Box-Behnken Design: An Alternative for the Optimization of Analytical Methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef]
- Chinn, R.E. Ceramography; Preparation and Analysis of Ceramic Microstructures, 1st ed.; ASM International: Materials Park, OH, USA, 2002; ISBN 0871707705. [Google Scholar]
- Ropuš, I.; Ćurković, L.; Mandić, V.; Mustafa, M.K.; Gabelica, I. Conventional and Non-Conventional Sintering Techniques of High Purity Alumina Ceramics. Tech. Gaz. 2021, 28, 1526–1531. [Google Scholar]
- Palmqvist, S. A Method to Determine the Toughness of Brittle Materials, Especially Hard Metals. Jenkontorets Ann. 1957, 141, 303–307. [Google Scholar]
- Casellas, D.; Nagl, M.M.; Llanes, L.; Anglada, M. Growth of Small Surface Indentation Cracks in Alumina and Zirconia Toughened Alumina. Key Eng. Mater. 1997, 127–131, 895–902. [Google Scholar] [CrossRef]
- Casellas, D.; Nagl, M.M.; Llanes, L.; Anglada, M. Microstructural Coarsening of Zirconia-Toughened Alumina Composites. J. Am. Ceram. Soc. 2005, 88, 1958–1963. [Google Scholar] [CrossRef]
- Anstis, G.R.; Chantikul, P.; Lawn, B.R.; Marshall, D.B. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements. J. Am. Ceram. Soc. 1981, 64, 533–538. [Google Scholar] [CrossRef]
- Xue, Z.; Tian, X.; Luan, Y.; Liu, J. Size Effect on Heat Conduction and Associate Thermal Fracture Behavior of Thin Ceramic Plates. Theor. Appl. Fract. Mech. 2021, 113, 102951. [Google Scholar] [CrossRef]
- Souza, A.L.; Lemos, S.G.; Oliveira, P.V. A Method for Ca, Fe, Ga, Na, Si and Zn Determination in Alumina by Inductively Coupled Plasma Optical Emission Spectrometry after Aluminum Precipitation. Spectrochim. Acta Part B At. Spectrosc. 2011, 66, 383–388. [Google Scholar] [CrossRef]
- Unal, F.; Kaya, F. Modelling of Relation between Synthesis Parameters and Average Crystallite Size of Yb2O3 Nanoparticles Using Box-Behnken Design. Ceram. Int. 2020, 46, 26800–26808. [Google Scholar] [CrossRef]
- Kurajica, S.; Mandić, V.; Ćurković, L. Mullite Ceramics Acid Corrosion Kinetics as a Function of Gel Homogeneity. Biointerface Res. Appl. Chem. 2017, 7, 2295–2299. [Google Scholar]
- Kurajica, S.; Ćurković, L.; Tkalčec, E.; Mandić, V. Acid Corrosion Behavior of Sol—Gel-Prepared Mullite Ceramics with and without Addition of Lanthanum. J. Am. Ceram. Soc. 2013, 96, 923–927. [Google Scholar] [CrossRef]
- Mendelson, M.I. Average Grain Size in Polycrystalline Ceramics. J. Am. Ceram. Soc. 1969, 52, 443–446. [Google Scholar] [CrossRef]
- Wurst, J.C.; Nelson, J.A. Lineal Intercept Technique for Measuring Grain Size in Two-phase Polycrystalline Ceramics. J. Am. Ceram. Soc. 1972, 55, 109. [Google Scholar] [CrossRef]
- Ćurković, L.; Ropuš, I.; Žmak, I.; Gabelica, I.; Švagelj, Z. Comparison of Mechanical Properties of Conventionally and Non-Conventionally Sintered Cold Isostatically Pressed Al2O3 Ceramics. Eng. Power Bull. Croat. Acad. Eng. 2021, 16, 7–15. [Google Scholar]
- Casellas, D.; Nagl, M.M.; Llanes, L.; Anglada, M. Fracture Toughness of Alumina and ZTA Ceramics: Microstructural Coarsening Effects. J. Mater. Process. Technol. 2003, 143–144, 148–152. [Google Scholar] [CrossRef]
- Corrêa de Sá e Benevides de Moraes, M.C.; Elias, C.N.; Duailibi Filho, J.; de Oliveira, L.G. Mechanical Properties of Alumina-Zirconia Composites for Ceramic Abutments. Mater. Res. 2004, 7, 643–649. [Google Scholar] [CrossRef]
- Spoerk, M.; Gonzalez-Gutierrez, J.; Lichal, C.; Cajner, H.; Berger, G.R.; Schuschnigg, S.; Cardon, L.; Holzer, C. Optimisation of the Adhesion of Polypropylene-Based Materials during Extrusion-Based Additive Manufacturing. Polymers 2018, 10, 490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cano, S.; Cajner, H.; Gonzalez-Gutierrez, J.; Sapkota, J.; Kukla, C.; Arbeiter, F.; Schuschnigg, S.; Holzer, C. Optimization of Material Properties for Highly-Filled Thermoplastic Polymers Used in Fused Filament Fabrication of Ceramics. AIP Conf. Proc. 2019, 2065, 030058. [Google Scholar] [CrossRef]
- Mäkelä, M. Experimental Design and Response Surface Methodology in Energy Applications: A Tutorial Review. Energy Convers. Manag. 2017, 151, 630–640. [Google Scholar] [CrossRef]
- McCauley, R.A. Corrosion of Ceramic Materials, 3rd ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2013; ISBN 9781439820230. [Google Scholar]
- Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2012. [Google Scholar]
Component | Fe2O3 | CaO | SiO2 | MgO | Na2O | Al2O3 |
---|---|---|---|---|---|---|
wt% | 0.018 | 0.02 | 0.0325 | 0.045 | 0.05 | balance |
Independent Variable | −1 Level | 0 | +1 Level |
---|---|---|---|
c (HNO3), mol dm−3 | 0.50 | 1.25 | 2.00 |
T, °C | 25 | 40 | 55 |
t, h | 24 | 132 | 240 |
No | c (HNO3), mol dm−3 | T, °C | t, h |
---|---|---|---|
1 | 1.25 | 25 | 240 |
2 | 1.25 | 40 | 132 |
3 | 2.00 | 40 | 24 |
4 | 2.00 | 55 | 132 |
5 | 0.50 | 40 | 24 |
6 | 2.00 | 40 | 240 |
7 | 1.25 | 40 | 132 |
8 | 1.25 | 40 | 132 |
9 | 0.50 | 25 | 132 |
10 | 1.25 | 40 | 132 |
11 | 1.25 | 40 | 132 |
12 | 1.25 | 25 | 24 |
13 | 0.50 | 40 | 240 |
14 | 1.25 | 55 | 240 |
15 | 2.00 | 25 | 132 |
16 | 0.50 | 55 | 132 |
17 | 1.25 | 55 | 24 |
Sample | ρ, g cm−3 | HV1 | KIC, MPa m1/2 |
---|---|---|---|
Al2O3 | 3.864 ± 0.018 | 1762 ± 77 | 5.44 ± 0.93 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value (Prob > F) |
---|---|---|---|---|---|
Model | 1.1658 | 9 | 0.1295 | 1092.97 | <0.0001 |
A-Concentration | 0.0013 | 1 | 0.0013 | 10.57 | 0.0140 |
B-Temperature | 0.1513 | 1 | 0.1513 | 1276.89 | <0.0001 |
C-Time | 0.4586 | 1 | 0.4586 | 3869.36 | <0.0001 |
AB | 0.0198 | 1 | 0.0198 | 167.35 | <0.0001 |
B2 | 0.0156 | 1 | 0.0156 | 131.21 | <0.0001 |
C2 | 0.0064 | 1 | 0.0064 | 53.69 | 0.0002 |
A2B | 0.0035 | 1 | 0.0035 | 29.36 | 0.0010 |
A2C | 0.0047 | 1 | 0.0047 | 39.98 | 0.0004 |
AB2 | 0.0325 | 1 | 0.0325 | 274.38 | <0.0001 |
Residual | 0.0008 | 7 | 0.0001 | ||
Lack of Fit | 0.0004 | 3 | 0.0001 | 1.0153 | 0.4737 * |
Pure Error | 0.0005 | 4 | 0.0001 | ||
Cor Total | 1.1666 | 16 |
Run | c, mol dm−3 | T, °C | t, h | µg (Al3+) cm−2 | µg (Ca2+) cm−2 | µg (Fe3+) cm−2 | µg (Mg2+) cm−2 | µg (Na+) cm−2 | ρ, g cm−3 |
---|---|---|---|---|---|---|---|---|---|
1 | 2.00 | 40 | 240 | 1.992 | 2.832 | 0.013 | 0.233 | 0.540 | 3.865 |
2 | 2.00 | 25 | 132 | 1.023 | 1.455 | 0.007 | 0.127 | 0.253 | 3.855 |
3 | 1.25 | 25 | 24 | 0.461 | 0.674 | 0.007 | 0.045 | 0.065 | 3.844 |
4 | 1.25 | 40 | 132 | 1.352 | 1.970 | 0.050 | 0.384 | 0.337 | 3.871 |
5 | 0.50 | 25 | 132 | 1.347 | 1.922 | 0.039 | 0.149 | 0.237 | 3.884 |
6 | 1.25 | 55 | 240 | 3.045 | 4.354 | 0.061 | 0.409 | 0.739 | 3.852 |
7 | 1.25 | 55 | 24 | 1.102 | 1.611 | 0.032 | 0.074 | 0.183 | 3.854 |
8 | 0.50 | 40 | 240 | 2.094 | 3.006 | 0.057 | 0.335 | 0.685 | 3.872 |
9 | 0.50 | 55 | 132 | 2.583 | 3.700 | 0.108 | 0.389 | 0.611 | 3.855 |
10 | 1.25 | 40 | 132 | 1.392 | 2.101 | 0.047 | 0.346 | 0.363 | 3.867 |
11 | 2.00 | 55 | 132 | 1.383 | 1.961 | 0.011 | 0.166 | 0.404 | 3.864 |
12 | 0.50 | 40 | 24 | 0.752 | 1.048 | 0.012 | 0.131 | 0.192 | 3.874 |
13 | 1.25 | 40 | 132 | 1.396 | 2.076 | 0.048 | 0.348 | 0.345 | 3.867 |
14 | 1.25 | 40 | 132 | 1.414 | 2.133 | 0.050 | 0.350 | 0.354 | 3.862 |
15 | 1.25 | 25 | 240 | 1.790 | 2.442 | 0.025 | 0.196 | 0.445 | 3.853 |
16 | 2.00 | 40 | 24 | 0.692 | 0.999 | 0.002 | 0.066 | 0.095 | 3.877 |
17 | 1.25 | 40 | 132 | 1.415 | 2.060 | 0.047 | 0.374 | 0.289 | 3.860 |
Response | Regression Equations |
---|---|
Al3+ | 1.18 − 0.018A + 0.19B + 0.34C − 0.07AB + 0.061B2 − 0.039C2 − 0.042A2B − 0.049A2C − 0.13AB2 |
Ca2+ | 1.43 − 0.019A + 0.24B + 0.39C − 0.086AB + 0.057B2 − 0.062C2 − 0.06A2B − 0.042A2C − 0.16AB2 |
Fe3+ | 0.049 − 0.013A + 0.017B + 0.013C − 0.016AB − 8.213·10−3AC + 2.572·10−3 BC − 8.784·10−3 A2 − 0.019C2 − 0.019 AB2 |
Mg2+ | 0.60 − 0.056A + 0.069B + 0.13C − 0.047AB + 0.034BC − 0.064A2 − 0.093B2 − 0.12C2 |
Na+ | 0.35 − 0.054A + 0.12B + 0.23C − 0.056AB + 0.044BC + 0.031A2 |
ρ | 3.86 − 0.003A + 2.2·10−3 B + 9.5·10−3 AB + 0.01 A2 − 0.011 B2 − 0.007A2B |
No of Verification | Response | Experimental Values | Predicted Values | Low CI (95%) | High CI (95%) |
---|---|---|---|---|---|
1 | Experimental parameters: 0.50 mol dm−3 HNO3, 25 °C, 132 h | ||||
µg (Al3+) cm−2 | 1.347 | 1.351 | 1.293 | 1.409 | |
µg (Ca2+) cm−2 | 1.922 | 1.947 | 1.786 | 2.115 | |
µg (Fe3+) cm−2 | 0.039 | 0.040 | 0.034 | 0.046 | |
µg (Mg2+) cm−2 | 0.148 | 0.147 | 0.114 | 0.185 | |
µg (Na+) cm−2 | 0.237 | 0.258 | 0.212 | 0.304 | |
ρ, g cm−3 | 3.884 | 3.880 | 3.870 | 3.891 | |
2 | Experimental parameters: 0.50 mol dm−3 HNO3, 40 °C, 240 h | ||||
µg (Al3+) cm−2 | 2.094 | 2.098 | 2.036 | 2.160 | |
µg (Ca2+) cm−2 | 3.006 | 3.013 | 2.841 | 3.191 | |
µg (Fe3+) cm−2 | 0.057 | 0.056 | 0.050 | 0.062 | |
µg (Mg2+) cm−2 | 0.335 | 0.367 | 0.323 | 0.415 | |
µg (Na+) cm−2 | 0.685 | 0.665 | 0.630 | 0.701 | |
ρ, g cm−3 | 3.872 | 3.877 | 3.870 | 3.883 | |
3 | Experimental parameters: 1.25 mol dm−3 HNO3, 25 °C, 240 h | ||||
µg (Al3+) cm−2 | 1.790 | 1.810 | 1.754 | 1.868 | |
µg (Ca2+) cm−2 | 2.442 | 2.473 | 2.318 | 2.635 | |
µg (Fe3+) cm−2 | 0.025 | 0.024 | 0.019 | 0.029 | |
µg (Mg2+) cm−2 | 0.196 | 0.176 | 0.140 | 0.217 | |
µg (Na+) cm−2 | 0.445 | 0.420 | 0.374 | 0.465 | |
ρ, g cm−3 | 3.853 | 3.850 | 3.843 | 3.858 | |
4 | Experimental parameters: 1.25 mol dm−3 HNO3, 55 °C, 24 h | ||||
µg (Al3+) cm−2 | 1.102 | 1.118 | 1.073 | 1.163 | |
µg (Ca2+) cm−2 | 1.611 | 1.636 | 1.511 | 1.768 | |
µg (Fe3+) cm−2 | 0.032 | 0.032 | 0.027 | 0.037 | |
µg (Mg2+) cm−2 | 0.074 | 0.088 | 0.063 | 0.118 | |
µg (Na+) cm−2 | 0.183 | 0.186 | 0.140 | 0.231 | |
ρ, g cm−3 | 3.854 | 3.855 | 3.847 | 3.863 | |
5 | Experimental parameters: 2.00 mol dm−3 HNO3, 40 °C, 24 h | ||||
µg(Al3+) cm−2 | 0.692 | 0.694 | 0.659 | 0.730 | |
µg (Ca2+) cm−2 | 0.999 | 1.004 | 0.906 | 1.108 | |
µg (Fe3+) cm−2 | 0.002 | 0.004 | 0.002 | 0.010 | |
µg (Mg2+) cm−2 | 0.066 | 0.055 | 0.039 | 0.075 | |
µg (Na+) cm−2 | 0.095 | 0.089 | 0.053 | 0.125 | |
ρ, g cm−3 | 3.877 | 3.871 | 3.864 | 3.877 |
No of Verification | Response | Experimental Values | Predicted Values | Low CI (95%) | High CI (95%) |
---|---|---|---|---|---|
1 | Experimental parameters: 0.50 mol dm−3 HNO3, 25 °C, 24 h, desirability 93% | ||||
µg (Al3+) cm−2 | 0.512 | 0.695 | 0.649 | 0.742 | |
µg (Ca2+) cm−2 | 0.724 | 0.970 | 0.845 | 1.106 | |
µg (Fe3+) cm−2 | 0.013 | 0.003 | 0.005 | 0.010 | |
µg (Mg2+) cm−2 | 0.046 | 0.030 | 0.014 | 0.053 | |
µg (Na+) cm−2 | 0.058 | 0.068 | 0.010 | 0.126 | |
ρ, g cm−3 | 3.868 | 3.880 | 3.870 | 3.891 | |
2 | Experimental parameters: 2.00 mol dm−3 HNO3, 40 °C, 24 h, desirability 87% | ||||
µg (Al3+) cm−2 | 0.692 | 0.694 | 0.659 | 0.730 | |
µg (Ca2+) cm−2 | 0.999 | 1.004 | 0.906 | 1.108 | |
µg (Fe3+) cm−2 | 0.002 | 0.004 | 0.002 | 0.010 | |
µg (Mg2+) cm−2 | 0.066 | 0.055 | 0.039 | 0.075 | |
µg (Na+) cm−2 | 0.095 | 0.089 | 0.053 | 0.125 | |
ρ, g cm−3 | 3.866 | 3.871 | 3.864 | 3.877 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ropuš, I.; Ćurković, L.; Cajner, H.; Rončević, S. Optimization of Alumina Ceramics Corrosion Resistance in Nitric Acid. Materials 2022, 15, 2579. https://doi.org/10.3390/ma15072579
Ropuš I, Ćurković L, Cajner H, Rončević S. Optimization of Alumina Ceramics Corrosion Resistance in Nitric Acid. Materials. 2022; 15(7):2579. https://doi.org/10.3390/ma15072579
Chicago/Turabian StyleRopuš, Ivana, Lidija Ćurković, Hrvoje Cajner, and Sanda Rončević. 2022. "Optimization of Alumina Ceramics Corrosion Resistance in Nitric Acid" Materials 15, no. 7: 2579. https://doi.org/10.3390/ma15072579
APA StyleRopuš, I., Ćurković, L., Cajner, H., & Rončević, S. (2022). Optimization of Alumina Ceramics Corrosion Resistance in Nitric Acid. Materials, 15(7), 2579. https://doi.org/10.3390/ma15072579