Three-Dimensional Nanoscale Morphological Surface Analysis of Polymeric Particles Containing Allium sativum Essential Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Essential Oil Encapsulation
2.3. AFM Imaging
2.4. Surface Analysis
2.5. Statistical Analysis
3. Results
3.1. Morphological Analysis
3.2. Stereometric Evaluation Evaluation
3.3. Watershed Segmentation of Particles’ Microtexture
3.4. Power Spectrum Density (PSD) of the Surface Nanotexture
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lawrence, R.; Lawrence, K. Antioxidant activity of garlic essential oil (Allium Sativum) grown in north Indian plains. Asian Pac. J. Trop. Biomed. 2011, 1, S51–S54. [Google Scholar] [CrossRef]
- Araújo, M.K.; Gumiela, A.M.; Bordin, K.; Luciano, F.B.; de Macedo, R.E.F. Combination of garlic essential oil, allyl isothiocyanate, and nisin Z as bio-preservatives in fresh sausage. Meat Sci. 2018, 143, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Matan, N.; Matan, N.; Ketsa, S. Effect of heat curing on antifungal activities of anise oil and garlic oil against Aspergillus niger on rubberwood. Int. Biodeterior. Biodegrad. 2012, 75, 150–157. [Google Scholar] [CrossRef]
- Long, Y.; Huang, W.; Wang, Q.; Yang, G. Green synthesis of garlic oil nanoemulsion using ultrasonication technique and its mechanism of antifungal action against Penicillium italicum. Ultrason. Sonochem. 2020, 64, 104970. [Google Scholar] [CrossRef] [PubMed]
- Visani, V.; Netto, J.M.S.; Honorato, R.S.; de Araújo, M.C.U.; Honorato, F.A. Screening analysis of garlic-oil capsules by infrared spectroscopy and chemometrics. Microchem. J. 2017, 133, 480–484. [Google Scholar] [CrossRef]
- Ragavan, G.; Muralidaran, Y.; Sridharan, B.; Ganesh, R.N.; Viswanathan, P. Evaluation of garlic oil in nano-emulsified form: Optimization and its efficacy in high-fat diet induced dyslipidemia in Wistar rats. Food Chem. Toxicol. 2017, 105, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Al-Tayyar, N.A.; Youssef, A.M.; Al-Hindi, R.R. Edible coatings and antimicrobial nanoemulsions for enhancing shelf life and reducing foodborne pathogens of fruits and vegetables: A review. Sustain. Mater. Technol. 2020, 26, e00215. [Google Scholar] [CrossRef]
- El-Sayed, S.M.; El-Sayed, H.S.; Ibrahim, O.A.; Youssef, A.M. Rational design of chitosan/guar gum/zinc oxide bionanocomposites based on Roselle calyx extract for Ras cheese coating. Carbohydr. Polym. 2020, 239, 116234. [Google Scholar] [CrossRef]
- Moustafa, H.; El-Sayed, S.M.; Youssef, A.M. Synergistic impact of cumin essential oil on enhancing of UV-blocking and antibacterial activity of biodegradable poly(butylene adipate-co-terephthalate)/clay platelets nanocomposites. J. Thermoplast. Compos. Mater. 2021, 34, 089270572198977. [Google Scholar] [CrossRef]
- Piletti, R.; Zanetti, M.; Jung, G.; de Mello, J.M.M.; Dalcanton, F.; Soares, C.; Riella, H.G.; Fiori, M.A. Microencapsulation of garlic oil by β-cyclodextrin as a thermal protection method for antibacterial action. Mater. Sci. Eng. C. 2019, 94, 139–149. [Google Scholar] [CrossRef]
- Vahedikia, N.; Garavand, F.; Tajeddin, B.; Cacciotti, I.; Jafari, S.M.; Omidi, T.; Zahedi, Z. Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes. Colloids Surf. B Biointerf. 2019, 177, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, M.; Pouramin, S.; Adinepour, F.; Haghani, S.; Jafari, S.M. Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydr. Polym. 2020, 236, 116075. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.F.; Zandi, M.; Rezaei, M.; Farahmandghavi, F. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydr. Polym. 2013, 95, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Ji, N.; Li, M.; Dai, L.; Xu, X.; Xiong, L.; Sun, Q. Fabrication of debranched starch nanoparticles via reverse emulsification for improvement of functional properties of corn starch films. Food Hydrocoll. 2020, 104, 105760. [Google Scholar] [CrossRef]
- El-Sayed, S.M.; El-Sayed, H.S. Antimicrobial nanoemulsion formulation based on thyme (Thymus vulgaris) essential oil for UF labneh preservation. J. Mater. Res. Technol. 2021, 10, 1029–1041. [Google Scholar] [CrossRef]
- Saada, N.S.; Abdel-Maksoud, G.; El-Aziz, M.S.A.; Youssef, A.M. Evaluation and utilization of lemongrass oil nanoemulsion for disinfection of documentary heritage based on parchment. Biocatal. Agric. Biotechnol. 2020, 29, 101839. [Google Scholar] [CrossRef]
- Calderó, G.; Montes, R.; Llinàs, M.; García-Celma, M.J.; Porras, M.; Solans, C. Studies on the formation of polymeric nano-emulsions obtained via low-energy emulsification and their use as templates for drug delivery nanoparticle dispersions. Colloids Surf. B Biointerf. 2016, 145, 922–931. [Google Scholar] [CrossRef]
- Moinard-Checot, D.; Chevalier, Y.; Briançon, S.; Fessi, H.; Guinebretière, S. Nanoparticles for Drug Delivery: Review of the formulation and process difficulties illustrated by the emulsion-diffusion process. J. Nanosci. Nanotechnol. 2006, 6, 2664–2681. [Google Scholar] [CrossRef]
- Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garciacelma, M. Nano-emulsions. Curr. Opin. Colloid Interface Sci. 2005, 10, 102–110. [Google Scholar] [CrossRef]
- Ferraro, M.A.N.; Pinto, E.P.; Matos, R.S. Study of the superficial distribution of microorganisms in kefir biofilms prepared with Cupuaçu juice. J. Bioenergy Food Sci. 2020, 7, 2732019. [Google Scholar] [CrossRef]
- Almeida, P.A.; Pinto, E.P.; Filho, H.D.F.; Matos, R.S. Distribution of microorganisms on surface of Kefir biofilms associated with Açaí extract. Sci. Amaz. 2019, 8, C10–C18. [Google Scholar]
- Matos, T.J.R.; Ramos, G.Q.; Matos, R.S.; da Fonseca Filhio, H.D. Medição da área foliar de Anacardium occidentale L. baseada em processamento digital de imagens. Sci. Amaz. 2019, 8, 11–15. [Google Scholar] [CrossRef]
- Ramos, G.Q.; Matos, R.S.; da Fonseca Filho, H.D. Advanced microtexture study of Anacardium occidentale L. leaf surface from the Amazon by fractal theory. Microsc. Microanal. 2020, 26, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Matos, R.S.; Pinto, E.P.; Ramos, G.Q.; da Fonseca de Albuquerque, M.D.; da Fonseca Filho, H.D. Stereometric characterization of kefir microbial films associated with Maytenus rigida extract. Microsc. Res. Tech. 2020, 83, 1401–1410. [Google Scholar] [CrossRef]
- Méndez, A.; Reyes, Y.; Trejo, G.; Stępień, K.; Ţălu, Ş. Micromorphological characterization of zinc/silver particle composite coatings. Microsc. Res. Technol. 2015, 78, 1082–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ţălu, Ş.; Stach, S.; Zaharieva, J.; Milanova, M.; Todorovsky, D.; Giovanzana, S. Surface roughness characterization of poly(methylmethacrylate) films with immobilized Eu(III) β-Diketonates by fractal analysis. Int. J. Polym. Anal. Charact. 2014, 19, 404–421. [Google Scholar] [CrossRef]
- Ţălu, Ş.; Matos, R.S.; Pinto, E.P.; Rezaee, S.; Mardani, M. Stereometric and fractal analysis of sputtered Ag-Cu thin films. Surf. Interf. 2020, 21, 100650. [Google Scholar] [CrossRef]
- Ţălu, Ş.; Abdolghaderi, S.; Pinto, E.P.; Matos, R.S.; Salerno, M. Advanced fractal analysis of nanoscale topography of Ag/DLC composite synthesized by RF-PECVD. Surf. Eng. 2020, 36, 713–719. [Google Scholar] [CrossRef]
- Omar, M.; Salcedo, C.; Ronald, R.; Zamora, M.; Tavares, C. Study fractal leaf surface of the plant species Copaifera sp. using the Microscope Atomic-Force-AFM, Rev. ECIPerú 2016, 13, 10–16. [Google Scholar] [CrossRef]
- Matos, R.S.; Ramos, G.Q.; da Fonseca Filho, H.D.; Ţălu, Ş. Advanced micromorphology study of microbial films grown on Kefir loaded with Açaí extract. Micron 2020, 137, 102912. [Google Scholar] [CrossRef]
- Senthilkumar, M.; Sahoo, N.K.; Thakur, S.; Tokas, R.B. Characterization of microroughness parameters in gadolinium oxide thin films: A study based on extended power spectral density analyses. Appl. Surf. Sci. 2005, 252, 1608–1619. [Google Scholar] [CrossRef]
- Barcelay, Y.R.; Moreira, J.A.G.; Almeida, A.D.J.M.; Brito, W.R.; Matos, R.S.; da Fonseca Filho, H.D. Nanoscale stereometric evaluation of BiZn0.5Ti0.5O3 thin films grown by RF magnetron sputtering. Mater. Lett. 2020, 279, 128477. [Google Scholar] [CrossRef]
- Arman, A.; Ţălu, Ş.; Luna, C.; Ahmadpourian, A.; Naseri, M.; Molamohammadi, M. Micromorphology characterization of copper thin films by AFM and fractal analysis. J. Mater. Sci. Mater. Electron. 2015, 26, 9630–9639. [Google Scholar] [CrossRef]
- Gong, Y.; Misture, S.T.; Gao, P.; Mellott, N.P. Surface roughness measurements using Power Spectrum Density analysis with enhanced spatial correlation length. J. Phys. Chem. C 2016, 120, 22358–22364. [Google Scholar] [CrossRef]
- de Oliveira, L.M.; Silva, L.S.; Mar, J.M.; Azevedo, S.G.; Rabelo, M.S.; da Fonseca Filho, H.D.; Lima, S.X.; Bezerra, J.D.A.; Machado, M.B.; Campelo, P.H.; et al. Alternative biodefensive based on the essential oil from Allium sativum encapsulated in PCL/Gelatin Nanoparticles. J. Food Eng. Technol. 2019, 8, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.S.; Mar, J.M.; Azevedo, S.G.; Rabelo, M.S.; Bezerra, J.A.; Campelo, P.H.; Machado, M.B.; Trovati, G.; Santos, A.L.d.; da Fonseca Filho, H.D.; et al. Encapsulation of Piper aduncum and Piper hispidinervum essential oils in gelatin nanoparticles: A possible sustainable control tool of Aedes aegypti, Tetranychus urticae and Cerataphis lataniae. J. Sci. Food Agric. 2019, 99, 685–695. [Google Scholar] [CrossRef]
- Mountains Map® 8 Premium Software (Digital Surf, Besançon, France). Available online: http://www.digitalsurf.fr (accessed on 22 March 2022).
- ISO. 2012 ISO 25178-2:2012 - Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. Available online: https://www.iso.org/standard/42785.html (accessed on 11 May 2020).
- Blateyron, F. The Areal Field Parameters. In Characterisation Areal Surface Texture; Springer: Berlin/Heidelberg, Germany, 2013; pp. 15–43. [Google Scholar] [CrossRef]
- Leach, R. Characterisation of Areal Surface Texture; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Franco, L.A.; Sinatora, A. 3D surface parameters (ISO 25178-2): Actual meaning of Spk and its relationship to Vmp. Precis. Eng. 2015, 40, 106–111. [Google Scholar] [CrossRef]
- Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.M.; Colchero, J.; Gómez-Herrero, J.; Baro, A.M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705. [Google Scholar] [CrossRef]
- Jacobs, T.D.B.; Junge, T.; Pastewka, L. Quantitative characterization of surface topography using spectral analysis. Surf. Topogr. Metrol. Prop. 2017, 5, 013001. [Google Scholar] [CrossRef]
- Martínez, J.G.; Nieto-Carvajal, I.; Abad, J.; Colchero, J. Nanoscale measurement of the power spectral density of surface roughness: How to solve a difficult experimental challenge. Nanoscale Res. Lett. 2012, 7, 174. [Google Scholar] [CrossRef] [Green Version]
- Klapetek, P.; Nečas, D.; Campbellová, A.; Yacoot, A.; Koenders, L. Methods for determining and processing 3D errors and uncertainties for AFM data analysis. Meas. Sci. Technol. 2011, 22, 025501. [Google Scholar] [CrossRef]
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- de Oliveira, L.M.; Lima, S.X.; Silva, L.S.; Mar, J.M.; Azevedo, S.G.; Rabelo, M.S.; Henrique, D.; Filho, F.; Campelo, P.H.; Sanches, E.A. Controlled release of Licaria puchury-major essential oil encapsulated in PCL/gelatin-based colloidal systems and membranes. Am. J. Essent. Oils Nat. Prod. 2019, 7, 23–29. [Google Scholar]
Parameter | P360 | P420 | P460 |
---|---|---|---|
Diameter (nm) | 184 ± 30 | 236 ± 49 | 261 ± 47 |
Height (nm) | 18 ± 5 | 31 ± 6 | 56 ± 6 |
Height/Diameter (nm) | 0.09 ± 0.04 | 0.13 ± 0.05 | 0.21 ± 0.06 |
Parameter | P360 | P420 | P460 |
---|---|---|---|
Functional | |||
Smr * (%) | 100 ± 0 | 100 ± 0 | 100 ± 0 |
Smc (nm) | 10 ± 1 | 15 ± 1 | 21 ± 1 |
Sxp (nm) | 15 ± 2 | 20.4 ± 0.3 | 24 ± 3 |
Spatial | |||
Sal (nm) | 0.7 ± 0,1 | 0.64 ± 0.07 | 0.49 ± 0.06 |
Str * | 0.49 ± 0.06 | 0.37 ± 0.07 | 0.6 ± 0.2 |
Std * (°) | 131 ± 74 | 132 ± 74 | 133 ± 74 |
Hybrid | |||
Sdq (-) | 0.039 ± 0.001 | 0.064 ± 0.001 | 0.100 ± 0.004 |
Sdr (%) | 0.076 ± 0.005 | 0.22 ± 0.02 | 0.49 ± 0.04 |
Feature | |||
Spd (1/μm²) | 1.2 ± 0.1 | 1.14 ± 0.04 | 0.92 ± 0.06 |
Spc (1/μm) | 0.67 ± 0.05 | 1.11 ± 0.07 | 2.3 ± 0.3 |
Parameter | P360 | P420 | P460 |
---|---|---|---|
Sk (nm) | 20 ± 2 | 29.013 ± 3 | 30.484 ± 4 |
Spk (nm) | 8.9 ± 0.9 | 13.397 ± 0.828 | 26.031 ± 4 |
Svk (nm) | 7.2 ± 0.8 | 9 ± 1 | 14 ± 2 |
Smr1 (%) | 13 ± 1 | 12.0 ± 0.7 | 17 ± 1 |
Smr2 * (%) | 89.7 ± 0.8 | 92 ± 1 | 91.0 ± 0.9 |
Vmp (µm3/µm2) | 4 × 10 –4 ± 4 × 10–5 | 6 × 10–4 ± 4 × 10–5 | 1 × 10–3 ± 1 × 10–4 |
Vmc (µm3/µm2) | 7 × 10–3 ± 9 × 10–4 | 1.02 × 10–2 ± 8.18 × 10–4 | 1.19 × 10–2 ± 1.04 × 10–3 |
Vvc (µm3/µm2) | 1 × 10–2 ± 1 × 10–3 | 2 × 10–2 ± 1 × 10–4 | 2 × 10–2 ± 1 × 10–3 |
Vvv (µm3/µm2) | 9 × 10–4 ± 7 × 10–5 | 1 × 10–3 ± 7 × 10–4 | 1 × 10–3 ± 2 × 10–4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, L.M.; Matos, R.S.; Ţălu, Ş.; Rocha, A.L.F.; de Aguiar Nunes, R.Z.; Bezerra, J.d.A.; Campelo Felix, P.H.; Inada, N.M.; Sanches, E.A.; da Fonseca Filho, H.D. Three-Dimensional Nanoscale Morphological Surface Analysis of Polymeric Particles Containing Allium sativum Essential Oil. Materials 2022, 15, 2635. https://doi.org/10.3390/ma15072635
de Oliveira LM, Matos RS, Ţălu Ş, Rocha ALF, de Aguiar Nunes RZ, Bezerra JdA, Campelo Felix PH, Inada NM, Sanches EA, da Fonseca Filho HD. Three-Dimensional Nanoscale Morphological Surface Analysis of Polymeric Particles Containing Allium sativum Essential Oil. Materials. 2022; 15(7):2635. https://doi.org/10.3390/ma15072635
Chicago/Turabian Stylede Oliveira, Larissa Medeiros, Robert Saraiva Matos, Ştefan Ţălu, Ana Luisa Farias Rocha, Ronald Zico de Aguiar Nunes, Jaqueline de Araújo Bezerra, Pedro Henrique Campelo Felix, Natália Mayumi Inada, Edgar Aparecido Sanches, and Henrique Duarte da Fonseca Filho. 2022. "Three-Dimensional Nanoscale Morphological Surface Analysis of Polymeric Particles Containing Allium sativum Essential Oil" Materials 15, no. 7: 2635. https://doi.org/10.3390/ma15072635
APA Stylede Oliveira, L. M., Matos, R. S., Ţălu, Ş., Rocha, A. L. F., de Aguiar Nunes, R. Z., Bezerra, J. d. A., Campelo Felix, P. H., Inada, N. M., Sanches, E. A., & da Fonseca Filho, H. D. (2022). Three-Dimensional Nanoscale Morphological Surface Analysis of Polymeric Particles Containing Allium sativum Essential Oil. Materials, 15(7), 2635. https://doi.org/10.3390/ma15072635