Tuning Surface Properties via Plasma Treatments for the Improved Capture of MicroRNA Biomarkers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plasma Treatments
2.3. Characterizations
2.4. Functional Assays
3. Results and Discussion
3.1. Surfaces Prepared with the Binary Mixture of Gases
3.1.1. Plasma Deposition at Constant Power (200 W)
3.1.2. Plasma Deposition at Variable Power
3.2. Surfaces Prepared with Ternary CH4/NH3/H2 Gas Feeds
3.3. Surfaces Prepared with Ternary CH4/NH3/N2 Gas Feeds
3.4. Selection and Analysis of Most Promising Surfaces
3.4.1. MicroRNA Adsorption as a Function of Time and pH
3.4.2. Selectivity and Elution Performance of Surfaces
3.5. Correlation between microRNA Adsorption and Nitrogen Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Connors, D.; Allen, J.; Alvarez, J.; Boyle, J.; Cristofanilli, M.; Hiller, C.; Keating, S.; Kelloff, G.; Leiman, L.; McCormack, R.; et al. International liquid biopsy standardization alliance white paper. Crit. Rev. Oncol. 2020, 156, 103112. [Google Scholar] [CrossRef] [PubMed]
- Lianidou, E.; Pantel, K. Liquid biopsies. Genes Chromosomes Cancer 2019, 58, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Mondelo-Macía, P.; García-González, J.; León-Mateos, L.; Castillo-García, A.; López-López, R.; Muinelo-Romay, L.; Díaz-Peña, R. Current Status and Future Per-spectives of Liquid Biopsy in Small Cell Lung Cancer. Biomedicines 2021, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, Q.; Zhang, R.; Dai, X.; Chen, W.; Xing, D. Circulating microRNAs: Biomarkers of disease. Clin. Chim. Acta 2021, 516, 46–54. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [Green Version]
- Calin, G.A.; Croce, C.M. MicroRNA Signatures in Human Cancers. Nat. Rev. Cancer 2006, 6, 857–866. [Google Scholar] [CrossRef]
- Iorio, M.; Croce, C. MicroRNA dysregulation in cancer:diagnostics, moni-toring and therapeutics.A comprehensive review. EMBO Mol. Med. 2012, 4, 143–159. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Sen, S. MicroRNA as Biomarkers and Diagnostics. J. Cell. Physiol. 2015, 231, 25–30. [Google Scholar] [CrossRef]
- Hayes, J.; Peruzzi, P.; Lawler, S. MicroRNAs in cancer: Biomarkers, func-tions and therapy. Trends Mol. Med. 2014, 20, 460–469. [Google Scholar] [CrossRef]
- Asaga, S.; Kuo, C.; Nguyen, T.; Terpenning, M.; Giuliano, A.E.; Hoon, D.S. Direct Serum Assay for MicroRNA-21 Concentrations in Early and Advanced Breast Cancer. Clin. Chem. 2011, 57, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Li, G.; Wang, Z.; Yao, Y.; Chen, R.; Pu, X.; Wang, J. Circulating mi-croRNA-21 is a potential diagnostic biomarker in gastric cancer. Dis. Markers 2015, 2015, 435656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krzywińska, O.; Bracha, M.; Jeanniere, C.; Recchia, E.; Kornatowska, K.K.; Kozakiewicz, M. Meta-Analysis of the Potential Role of miRNA-21 in Cardiovascular System Function Monitoring. BioMed Res. Int. 2020, 2020, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghafouri-Fard, S.; Gholipour, M.; Taheri, M. Role of MicroRNAs in the Pathogenesis of Coronary Artery Disease. Front. Cardiovasc. Med. 2021, 8. [Google Scholar] [CrossRef] [PubMed]
- Sekar, D.; Venugopal, B.; Sekar, P.; Ramalingam, K. Role of microRNA 21 in diabetes and associated/related diseases. Gene 2016, 582, 14–18. [Google Scholar] [CrossRef]
- Ehtesham, N.; Shahrbanian, S.; Valadiathar, M.; Mowla, S. Modulations of obesity related microRNAs after exercise intervention: A systematic review and bi-oinformatics analysis. Mol. Biol. Rep. 2021, 48, 2817–2831. [Google Scholar] [CrossRef]
- Santini, G.; Potrich, C.; Lunelli, L.; Vanzetti, L.; Marasso, S.; Cocuzza, M.; Pirri, C.; Pederzolli, C. miRNA purification with an optimized PDMS microdevice: To-ward the direct purification of low abundant circulating biomarkers. Biophys. Chem. 2017, 229, 142–150. [Google Scholar] [CrossRef]
- Potrich, C.; Vaghi, V.; Lunelli, L.; Pasquardini, L.; Santini, G.C.; Ottone, C.; Quaglio, M.; Cocuzza, M.; Pirri, C.F.; Ferracin, M.; et al. OncomiR detection in circulating body fluids: A PDMS microdevice perspective. Lab Chip 2014, 14, 4067–4075. [Google Scholar] [CrossRef]
- Potrich, C.; Lunelli, L.; Cocuzza, M.; Marasso, S.; Pirri, C.; Pederzolli, C. Sim-ple PDMS microdevice for biomedical applications. Talanta 2019, 193, 44–50. [Google Scholar] [CrossRef]
- Lunelli, L.; Caradonna, F.; Potrich, C.; Piotto, C.; Bettotti, P.; Vanzetti, L.; Pederzolli, C.; Guella, G. A new silanizing agent tailored to surface bio-functionalization. Colloids Surf. B Biointerfaces 2019, 181, 166–173. [Google Scholar] [CrossRef]
- Tabarés, F.L. Plasma Applications for Material Modification From Microelec-tronics to Biological Materials; Jenny Stanford Publishing: Singapore, 2021. [Google Scholar]
- Sabu, T.; Mozetic, M.; Cvelbar, U.; Spatenka, P.; Praveen, K.M. Non-Thermal Plasma Technology for Polymeric Materials. Applications in Composites, Nanostructured Materials nd Biomedical Fields; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Weltmann, K.-D.; Kolb, J.F.; Holub, M.; Uhrlandt, D.; Šimek, M.; Ostrikov, K.; Hamaguchi, S.; Cvelbar, U.; Černák, M.; Locke, B.; et al. The future for plasma science and technology. Plasma Process. Polym. 2019, 16. [Google Scholar] [CrossRef] [Green Version]
- Govindarajan, T.; Shandas, R. A Survey of Surface Modification Techniques for Next-Generation Shape Memory Polymer Stent Devices. Polymers 2014, 6, 2309–2331. [Google Scholar] [CrossRef]
- Qiu, Z.-Y.; Chen, C.; Wang, X.-M.; Lee, I.-S. Advances in the surface modification techniques of bone-related implants for last 10 years. Regen. Biomater. 2014, 1, 67–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minati, L.; Migliaresi, C.; Lunelli, L.; Viero, G.; Serra, M.D.; Speranza, G. Plasma assisted surface treatments of biomaterials. Biophys. Chem. 2017, 229, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Langer, R.; Tirrell, D.A. Designing materials for biology and medicine. Nature 2004, 428, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Lopez, L.; Gristina, R.; d’Agostino, R.; Favia, P. Chemical immobilization of Biomolecules on Plasma-modified substrates for biomedical applications. In Advanced Plasma Technology; d’Agostino, R., Favia, P., Kawai, Y., Ikegami, H., Sato, N., Arefi-Khonsari, F., Eds.; Wiley-VCH: Hoboken, NJ, USA, 2008; pp. 269–286. [Google Scholar]
- Antonini, V.; Torrengo, S.; Marocchi, L.; Minati, L.; Serra, M.D.; Bao, G.; Speranza, G. Combinatorial plasma polymerization approach to produce thin films for testing cell proliferation. Colloids Surf. B Biointerfaces 2014, 113, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Chu, V.; Chen, J.; Wang, L.; Huang, N. Plasma-surface modification of bio-materials. Mater. Sci. Eng. R. Rep. 2002, 36, 143–206. [Google Scholar] [CrossRef] [Green Version]
- Sardella, E.; Palumbo, F.; Camporeale, G.; Favia, P. Non-Equilibrium Plasma Processing for the Preparation of Antibacterial Surfaces. Materials 2016, 9, 515. [Google Scholar] [CrossRef] [Green Version]
- Da Ponte, G.; Sardella, E.; Fanelli, F.; van Hoeck, A.; d’Agostino, R.; Paulussen, S.; Favia, P. Atmospheric P Plasma Deposition of different organic films for bio-medical applications. Surf. Coat. Technol. 2011, 205, S525. [Google Scholar] [CrossRef]
- Kehrer, M.; Duchoslav, J.; Hinterreiter, A.; Cobet, M.; Mehic, A.; Stehrer, T.; Stifter, D. XPS investigation on the reactivity of surface imine groups with TFAA. Plasma Process. Polym. 2019, 16. [Google Scholar] [CrossRef]
- Sandeep Kumar, G.; Roy, R.; Sen, D.; Ghorai, U.K.; Thapa, R.; Mazumder, N.; Saha, S.; Chattopadhyay, K.K. Amino-functionalized graphene quantum dots: Origin of tunable heterogeneous photoluminescence. Nanoscale 2014, 6, 3384–3391. [Google Scholar] [CrossRef]
- West, N.; Seoudi, R.; Barlow, A.; Qi, D.; Puskar, L.; Del Borgo, M.; Kulkarni, K.; Adda, C.; Pan, J.; Aguilar, M.-I.; et al. A two-dimensional metallosupramolecular framework design based on coordina-tion crosslinking of helical oligoamide nanorods. Mater. Adv. 2020, 1, 1134–1141. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https://www.R-project.org/ (accessed on 2 April 2022).
- Speranza, G.; Canteri, R. RxpsG a new open project for Photoelectron and Electron Spectroscopy data processing. SoftwareX 2019, 10. [Google Scholar] [CrossRef]
- Naumkin, A.V.; Kraut-Vass, A.; Gaarenstroom, S.W.; Powell, C.J. NIST X-ray Photoelectron Spectroscopy Database; NIST Standard Reference Database 20 version 4.1; NIST: Gaithersburg, MD, USA, 2012. [CrossRef]
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database, Surface Spectra; Wiley: Chichester, UK, 1992. [Google Scholar]
- Wang, Z.; Sun, C.; Vegesna, G.; Liu, H.; Liu, Y.; Li, J.; Zeng, X. Glycosylated aniline polymer sensor: Amine to imine conversion on protein-carbohydrate binding. Biosens. Bioelectron. 2013, 15, 183–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udenfriend, S.; Stein, S.; Böhlen, P.; Dairman, W.; Leimgruber, W.; Wei-gele, M. Fluorescamine: A reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science 1972, 178, 871–872. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Santini, G.; Potrich, C.; Lunelli, L.; Pasquardini, L.; Vaghi, V.; Pederzolli, C. Innovative microRNA purification based on surface properties modulation. Colloids Surf. B Biointerfaces 2014, 116, 160–168. [Google Scholar] [CrossRef]
- Pasquardini, L.; Lunelli, L.; Potrich, C.; Marocchi, L.; Fiorilli, S.; Vozzi, D.; Vanzetti, L.; Gasparini, P.; Anderle, M.; Pederzolli, C. Organo-silane coated substrates for DNA purification. Appl. Surf. Sci. 2011, 257, 10821–10827. [Google Scholar] [CrossRef]
- Truica-Marasescu, F.; Wertheimer, M.R. Nitrogen-Rich Plasma-Polymer Films for Biomedical Applications. Plasma Process. Polym. 2007, 5, 44–57. [Google Scholar] [CrossRef]
- Siow, K.; Britcher, L.; Kumar, S.; Griesser, H. Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization— A review. Plasma Process. Polym. 2006, 3, 392–418. [Google Scholar] [CrossRef]
- Seah, M.P.; Dench, W.A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surf. Interface Anal. 1979, 1, 2–11. [Google Scholar] [CrossRef]
- Meyer-Plath, A.; Schroder, K.; Finke, B.; Ohl, A. Current trends in bio-material surface functionalization-nitrogen-containing plasma assisted processes with enhanced selectivity. Vacuum 2003, 71, 391–406. [Google Scholar] [CrossRef]
- ThermoScientific. ThermoFisherScientific. Available online: https://www.thermofisher.com/order/catalog/product/A20000?SID=srch-srp-A20000 (accessed on 2 April 2022).
- Vezenov, D.; Noy, A.; Rozsnyai, L.; Lieber, C. Force Titrations and Ioniza-tion State Sensitive Imaging of Functional Groups in Aqueous Solutions by Chemi-cal Force Microscopy. J. Am. Chem. Soc. 1997, 119, 2006–2015. [Google Scholar] [CrossRef]
- Marocchi, L. Surface Functionalizations towards Nucleic Acid Purification: A Nanoscale Study. Ph.D. Thesis, University of Trento, Trento, Italy, 2014. [Google Scholar]
- Lunelli, L.; Barbaresco, F.; Scordo, G.; Potrich, C.; Vanzetti, L.; Marasso, S.L.; Cocuzza, M.; Pirri, C.F.; Pederzolli, C. PDMS-Based Microdevices for the Capture of MicroRNA Biomarkers. Appl. Sci. 2020, 10, 3867. [Google Scholar] [CrossRef]
- Van der Maaden, K.; Sliedregt, K.; Kros, A.; Jiskoot, W.; Bouwstra, J. Fluo-rescent Nanoparticle Adhesion Assay: A Novel Method for Surface pKa Determina-tion of Self-Assembled Monolayers on Silicon Surfaces. Langmuir 2012, 28, 3403–3411. [Google Scholar] [CrossRef]
- Van der Vegte, E.; Hadziioannou, G. Acid—Base Properties and the Chem-ical Imaging of Surface-Bound Functional Groups Studied with Scanning Force Mi-croscopy. J. Phys. Chem. B 1997, 101, 9563–9569. [Google Scholar] [CrossRef]
- Zhong, S.; Golpon, H.; Zardo, P.; Borlak, J. miRNAs in lung cancer. A sys-tematic review identifies predictive and prognostic miRNA candidates for preci-sion medicine in lung cancer. Transl. Res. 2021, 230, 164–196. [Google Scholar] [CrossRef]
- Schaefer, A.; Jung, M.; Miller, K.; Lei, M.; Kristiansen, G.; Erbersdobler, A.; Jung, K. Suitable reference genes for relative quantification of miRNA expression in prostate cancer. Exp. Mol. Med. 2010, 42, 749–758. [Google Scholar] [CrossRef] [Green Version]
CH4 (sccm) | NH3 (sccm) | CH4 (sccm) | NH3 (sccm) | H2 (sccm) | CH4 (sccm) | NH3 (sccm) | N2 (sccm) |
---|---|---|---|---|---|---|---|
70 | 10 | 68 | 10 | 2 | 65 | 10 | 5 |
60 | 20 | 66 | 10 | 4 | 60 | 10 | 10 |
50 | 30 | 64 | 10 | 6 | 55 | 10 | 15 |
40 | 40 | 57 | 15 | 8 | 60 | 15 | 5 |
30 | 50 | 50 | 20 | 10 | 55 | 15 | 10 |
20 | 60 | 48 | 20 | 12 | 50 | 15 | 15 |
10 | 70 | 55 | 20 | 5 | |||
50 | 20 | 10 | |||||
45 | 20 | 15 |
Surface | N 1s | Si 2p | C 1s | O 1s | |||
---|---|---|---|---|---|---|---|
CH4 (sccm) | NH3 (sccm) | Amino | Non-Amino | Total | |||
70 | 10 | 4.1 | 15.5 | 19.6 | 0.0 | 74.7 | 5.7 |
60 | 20 | 3.9 | 26.7 | 30.6 | 7.5 | 52.9 | 8.9 |
50 | 30 | 1.1 | 13.7 | 14.8 | 39.3 | 15.4 | 30.5 |
40 | 40 | 0.7 | 10.0 | 10.6 | 40.3 | 16.6 | 32.3 |
30 | 50 | 2.0 | 23.5 | 25.5 | 8.6 | 56.8 | 9.0 |
20 | 60 | 1.0 | 9.0 | 10.0 | 40.7 | 18.5 | 30.7 |
10 | 70 | 2.9 | 4.9 | 7.8 | 45.9 | 8.4 | 37.8 |
Surface | N 1s | ||||
---|---|---|---|---|---|
CH4 (sccm) | NH3 (sccm) | Amino 50 W | Amino 100 W | Amino 150 W | Amino 200 W |
70 | 10 | 2.6 | 2.2 | 3.8 | 4.3 |
60 | 20 | 2.1 | 2.3 | 3.4 | 3.7 |
50 | 30 | 1.9 | 1.5 | 1.1 | 1.2 |
40 | 40 | 0.7 | 0.9 | 0.9 | 1.0 |
Surface | N 1s | ||
---|---|---|---|
CH4 (sccm) | NH3 (sccm) | H2 (sccm) | Amino |
68 | 10 | 2 | 6.6 |
66 | 10 | 4 | 6.9 |
64 | 10 | 6 | 7.8 |
57 | 15 | 8 | 8.7 |
50 | 20 | 10 | 9.8 |
48 | 20 | 12 | 9.4 |
Surface | N 1 s | |||
---|---|---|---|---|
CH4 (sccm) | NH3 (sccm) | N2 (sccm) | Amino | Total |
65 | 10 | 5 | 6.6 | 9.6 |
60 | 10 | 10 | 7.4 | 9.8 |
55 | 10 | 15 | 8.0 | 12.5 |
60 | 15 | 5 | 8.0 | 11.2 |
55 | 15 | 10 | 9.0 | 12.3 |
50 | 15 | 15 | 10.2 | 13.8 |
55 | 20 | 5 | 10.2 | 14.8 |
50 | 20 | 10 | 10.9 | 15.8 |
45 | 20 | 15 | 13.0 | 18.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speranza, G.; Mele, G.R.; Favia, P.; Pederzolli, C.; Potrich, C. Tuning Surface Properties via Plasma Treatments for the Improved Capture of MicroRNA Biomarkers. Materials 2022, 15, 2641. https://doi.org/10.3390/ma15072641
Speranza G, Mele GR, Favia P, Pederzolli C, Potrich C. Tuning Surface Properties via Plasma Treatments for the Improved Capture of MicroRNA Biomarkers. Materials. 2022; 15(7):2641. https://doi.org/10.3390/ma15072641
Chicago/Turabian StyleSperanza, Giorgio, Gaetano Roberto Mele, Pietro Favia, Cecilia Pederzolli, and Cristina Potrich. 2022. "Tuning Surface Properties via Plasma Treatments for the Improved Capture of MicroRNA Biomarkers" Materials 15, no. 7: 2641. https://doi.org/10.3390/ma15072641
APA StyleSperanza, G., Mele, G. R., Favia, P., Pederzolli, C., & Potrich, C. (2022). Tuning Surface Properties via Plasma Treatments for the Improved Capture of MicroRNA Biomarkers. Materials, 15(7), 2641. https://doi.org/10.3390/ma15072641