Experimental and Numerical Analysis on the Impact Wear Behavior of TP316H Steel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experimental Procedure
2.2. Contact Force Model for Impact Wear
3. Results
3.1. Impact Dynamic Response of Thin-Walled Tube
3.2. A Revised Contact Force Model for Thin-Walled Tubes
3.3. Impact Wear Behavior of TP316H
4. Discussion
4.1. The Validity of the Revised Model
4.2. Energy Dissipation during Impact
5. Conclusions
- (a)
- The revised contact force model is in good agreement with the experimental results and is more suitable for studying the dynamic response of the thin-walled tube impact interface than the existing model. This provides a reference for applying the contact force model to impact wear tests.
- (b)
- With the rise in impact mass, the coefficient of restitution increases from 0.65 to 0.78, whereas the peak contact force and maximum relative deformation decrease, and the momentum loss also decreases.
- (c)
- When the kinetic energy is equal, the energy dissipation and wear volume decrease as the impact mass increases. The impact wear mechanism of TP316H steel is mainly spalling, delamination, plastic deformation, and oxidative wear.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Skrinjar, L.; Slavič, J.; Boltežar, M. A review of continuous contact-force models in multibody dynamics. Int. J. Mech. Sci. 2018, 145, 171–187. [Google Scholar] [CrossRef]
- Lewis, R. A modelling technique for predicting compound impact wear. Wear 2007, 262, 1516–1521. [Google Scholar] [CrossRef]
- Zhong, L.; Feng, G.-H.; Zhu, H.-M.; Wang, G.-R.; Chen, W.-B. Structural Optimization Analysis and Erosion Resistance Study of Frac Ball Seat. Surf. Technol. 2021, 50, 213–228. [Google Scholar]
- Li, L.; Ge, P.-Q. Analysis of SPH and FEM Coupling Simulation of Abrasive Grain Scratching Single Crystal SiC. Surf. Technol. 2021, 50, 44–53. [Google Scholar]
- Cai, Z.B.; Li, Z.Y.; Yin, M.G.; Zhu, M.H.; Zhou, Z.R. A review of fretting study on nuclear power equipment. Tribol. Int. 2020, 144, 106095. [Google Scholar] [CrossRef]
- Souilliart, T.; Rigaud, E.; Le Bot, A.; Phalippou, C. Energy-based wear law for oblique impacts in dry environment. Tribol. Int. 2017, 105, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Zalzalah, M.; Lewis, R.; Slatter, T. A new predictive model for normal and compound impact wear. Wear 2021, 480, 203954. [Google Scholar] [CrossRef]
- Johnson, K.L. One hundred years of Hertz contact. Proc. Inst. Mech. Eng. 1982, 196, 363–378. [Google Scholar] [CrossRef]
- Goldsmith, W. Impact: The Theory and Physical Behavior of Colliding Solids; Edward Arnold: Manchester, CT, USA, 1960. [Google Scholar]
- Hunt, K.H.; Crossley, F.R.E. Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. Trans. ASME 1975, 42, 440–445. [Google Scholar] [CrossRef]
- Marhefka, D.W.; Orin, D.E. A compliant contact model with nonlinear damping for simulation of robotic systems. IEEE Trans. Syst. Man Cybern. Paart A-Syst. Hum. 1999, 29, 566–572. [Google Scholar] [CrossRef]
- Dubowsky, S.; Gardner, T. Design and analysis of multilink flexible mechanisms with multiple clearance connections. J. Eng. Ind.-Trans. ASME 1977, 99, 88–96. [Google Scholar] [CrossRef]
- Gonthier, Y.; McPhee, J.; Lange, C.; Piedboeuf, J.-C. A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn. 2004, 11, 209–233. [Google Scholar] [CrossRef]
- Alves, J.; Peixinho, N.; da Silva, M.T.; Flores, P.; Lankarani, H.M. A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids. Mech. Mach. Theory 2015, 85, 172–188. [Google Scholar] [CrossRef]
- Machado, M.; Moreira, P.; Flores, P.; Lankarani, H.M. Compliant contact force models in multibody dynamics: Evolution of the Hertz contact theory. Mech. Mach. Theory 2012, 53, 99–121. [Google Scholar] [CrossRef]
- Pereira, C.M.; Ramalho, A.L.; Ambrósio, J.A. A critical overview of internal and external cylinder contact force models. Nonlinear Dyn. 2010, 63, 681–697. [Google Scholar] [CrossRef] [Green Version]
- Flores, P.; Machado, M.; Silva, M.T.; Martins, J.M. On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 2010, 25, 357–375. [Google Scholar] [CrossRef]
- Lee, T.W.; Wang, A. On the dynamics of intermittent-motion mechanisms. Part 1: Dynamic model and response. J. Mech. Trans. Automation. 1983, 105, 534–540. [Google Scholar] [CrossRef]
- Gilardi, G.; Sharf, I. Literature survey of contact dynamics modelling. Mech. Mach. Theory 2002, 37, 1213–1239. [Google Scholar] [CrossRef]
- Souilliart, T.; Rigaud, E.; Le Bot, A.; Phalippou, C. An energy approach for impact wear in water environment. Wear 2017, 376–377, 738–746. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.M.; Kim, I.S. Impact fretting wear of alloy 690 tubes at 25 °C and 290 °C. Wear 2005, 259, 356–360. [Google Scholar] [CrossRef]
- Cai, Z.; Chen, Z.; Sun, Y.; Jin, J.; Peng, J.; Zhu, M. Development of a novel cycling impact–sliding wear rig to investigate the complex friction motion. Friction 2017, 7, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Kayali, Y. The corrosion and wear behavior of TiN and TiAlN coated AISI 316 L stainless steel. Prot. Met. Phys. Chem. Surf. 2014, 50, 412–419. [Google Scholar] [CrossRef]
- Li, H.; Ramezani, M.; Li, M.; Ma, C.; Wang, J. Tribological performance of selective laser melted 316L stainless steel. Tribol. Int. 2018, 128, 121–129. [Google Scholar] [CrossRef]
- Chen, X.D.; Wang, L.W.; Yang, L.Y.; Tang, R.; Cai, Z.B. Effects of Temperature on the Fretting Wear Behavior of 2.25Cr-1Mo Tubes against Gr5C12 Rods. Materials 2020, 13, 3388. [Google Scholar] [CrossRef]
- Yu, Y.Q.; Chen, X.D.; Yang, L.Y.; Guan, X.M.; Cai, Z.B.; Wang, L.W. Investigation on fretting wear behavior of 2.25 Cr-1Mo tube in water at various temperatures. Wear 2021, 476, 203727. [Google Scholar] [CrossRef]
- Čiripová, L.; Falat, L.; Ševc, P.; Vojtko, M.; Džupon, M. Ageing effects on room-temperature tensile properties and fracture behavior of quenched and tempered T92/TP316H dissimilar welded joints with Ni-based weld metal. Metals 2018, 8, 791. [Google Scholar] [CrossRef] [Green Version]
- Blach, J.; Falat, L. The influence of thermal exposure and hydrogen charging on the notch tensile properties and fracture behaviour of dissimilar T91/TP316H weldments. High Temp. Mater. Process. 2014, 33, 329–337. [Google Scholar] [CrossRef]
- Chen, X.-D.; Feng, S.; Wang, L.-W.; Tang, R.; Zhang, F.; Ming, S.-L.; Cai, Z.-B. Effect of QPQ on the fretting wear behavior of TP316H steel at varying temperatures in liquid sodium. J. Nucl. Mater. 2022, 562, 153583. [Google Scholar] [CrossRef]
- Cai, Z.-B.; Chen, X.-D.; Rui, T.; Wang, L.-W.; Liu, X.-H.; Zhang, F. Investigation of the fretting corrosion mechanism of QPQ-treated TP316H steel in liquid sodium at 450 °C. Corros. Sci. 2022, 201, 110282. [Google Scholar] [CrossRef]
- Chen, X.-D.; Wang, L.-W.; Yang, L.-Y.; Tang, R.; Yu, Y.-Q.; Cai, Z.-B. Investigation on the impact wear behavior of 2.25 Cr–1Mo steel at elevated temperature. Wear 2021, 476, 203740. [Google Scholar] [CrossRef]
- Engel, P.; Bayer, R. The wear process between normally impacting elastic bodies. J. Lubr. Tech. 1974, 96, 595–604. [Google Scholar] [CrossRef]
- Lankarani, H.M.; Nikravesh, P.E. A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 1990, 112, 369–376. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, Z.-B.; Chen, Z.-Q.; Sun, Y.; Zhu, M.-H. Low-Velocity Impact Wear Behavior of Ball-to-Flat Contact Under Constant Kinetic Energy. J. Mater. Eng. Perform. 2017, 26, 5669–5679. [Google Scholar] [CrossRef]
- Sun, Y.; Cai, Z.-B.; Chen, Z.-q.; Qian, H.; Tang, L.-C.; Xie, Y.; Zhou, Z.-R.; Zhu, M.-h. Impact fretting wear of Inconel 690 tube with different supporting structure under cycling low kinetic energy. Wear 2017, 376–377, 625–633. [Google Scholar] [CrossRef]
- Lin, Y.-W.; Cai, Z.-B.; Chen, Z.-Q.; Qian, H.; Tang, L.-C.; Xie, Y.-C.; Zhu, M.-H. Influence of diameter–thickness ratio on alloy Zr-4 tube under low-energy impact fretting wear. Mater. Today Commun. 2016, 8, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Berinskii, I.; Krivtsov, A.; Kudarova, A. Bending stiffness of a graphene sheet. Phys. Mesomech. 2014, 17, 356–364. [Google Scholar] [CrossRef]
- Shadmehri, F.; Derisi, B.; Hoa, S.V. On bending stiffness of composite tubes. Compos. Struct. 2011, 93, 2173–2179. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, Z.-B.; Sun, Y.; Peng, J.-F.; Zhu, M.-H. Low velocity impact wear behavior of MoS2/Pb nanocomposite coating under controlled kinetic energy. Surf. Coat. Technol. 2017, 326, 53–62. [Google Scholar] [CrossRef]
- Abdollah, M.F.B.; Yamaguchi, Y.; Akao, T.; Inayoshi, N.; Tokoroyama, T.; Umehara, N. The Effect of Maximum Normal Impact Load, Absorbed Energy, and Contact Impulse, on the Impact Crater Volume/Depth of DLC Coating. Tribol. Online 2011, 6, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Brach, R.M. Impact dynamics with applications to solid particle erosion. Int. J. Impact Eng. 1988, 7, 37–53. [Google Scholar] [CrossRef]
- Brach, R.M. Classical planar impact theory and the tip impact of a slender rod. Int. J. Impact Eng. 1993, 13, 21–33. [Google Scholar] [CrossRef]
Materials | HV(0.1) | Poisson’s Ratio | Young’s Modulus | Surface Roughness |
---|---|---|---|---|
TP316H | 174.63 | 0.29 | 112.98 Gpa | Ra = 0.12 μm |
316H | 172.55 | 0.28 | 89.11 Gpa | Ra = 0.13 μm |
Impact Wear Test | Sample Geometry | ||
---|---|---|---|
Tube material | TP316H | Tube | |
Rod material | 316H | Outer diameter | 16 mm |
Temperature | Room temperature | Inner diameter | 13.6 mm |
Impact mass | 500 g, 600 g, 700 g, 800 g, 900 g | Length | 30 mm |
Impact energy | 3.50 mJ | Rod | |
Impact frequency | 3 Hz | Diameter | 10 mm |
Number of cycles | 104 | Length | 20 mm |
Test Variables | The Experimental Data | The Calculated Data | |||
---|---|---|---|---|---|
Pre-Impact Velocity (v1) mm/s | Post-Impact Velocity (v2) mm/s | K | cr | ||
500 g | 117.9 | 76.4 | 4.0 × 109 | 0.65 | 2.9 × 1010 |
600 g | 107.9 | 73.8 | 0.68 | 2.8 × 1010 | |
700 g | 99.6 | 73.0 | 0.73 | 2.4 × 1010 | |
800 g | 93.0 | 70.0 | 0.75 | 2.3 × 1010 | |
900 g | 89.7 | 69.8 | 0.78 | 2.0 × 1010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.-d.; Wang, L.-W.; Yu, Q.-h.; Zhang, F.; Mo, K.; Ming, S.-L.; Cai, Z.-B. Experimental and Numerical Analysis on the Impact Wear Behavior of TP316H Steel. Materials 2022, 15, 2881. https://doi.org/10.3390/ma15082881
Chen X-d, Wang L-W, Yu Q-h, Zhang F, Mo K, Ming S-L, Cai Z-B. Experimental and Numerical Analysis on the Impact Wear Behavior of TP316H Steel. Materials. 2022; 15(8):2881. https://doi.org/10.3390/ma15082881
Chicago/Turabian StyleChen, Xu-dong, Li-Wen Wang, Qi-hang Yu, Fan Zhang, Kun Mo, Shi-Lin Ming, and Zhen-Bing Cai. 2022. "Experimental and Numerical Analysis on the Impact Wear Behavior of TP316H Steel" Materials 15, no. 8: 2881. https://doi.org/10.3390/ma15082881
APA StyleChen, X. -d., Wang, L. -W., Yu, Q. -h., Zhang, F., Mo, K., Ming, S. -L., & Cai, Z. -B. (2022). Experimental and Numerical Analysis on the Impact Wear Behavior of TP316H Steel. Materials, 15(8), 2881. https://doi.org/10.3390/ma15082881