Role of Eu2+ and Dy3+ Concentration in the Persistent Luminescence of Sr2MgSi2O7 Glass-Ceramics
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Glasses and Glass-Ceramics Preparation
2.2. Thermal and Structural Characterisation
2.3. Optical Characterisation
3. Results and Discussion
3.1. Thermal and Structural Properties
3.2. X-ray Diffraction
3.3. SEM and CL–SEM
3.4. Optical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kobashi, K.; Taguchi, T. Imaging camera system of OYGBR-phosphor-based white LED lighting. Light. Diodes Res. Manuf. Appl. IX 2005, 5739, 25–32. [Google Scholar] [CrossRef]
- Wang, X.D.; Wolfbeis, O.S.; Meier, R.J. Luminescent probes and sensors for temperature. Chem. Soc. Rev. 2013, 42, 7834–7869. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Lu, Y.-Y.; Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 2012, 11, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Han, S.; Huang, W.; Liu, X. Enhancing solar cell efficiency: The search for luminescent materials as spectral converters. Chem. Soc. Rev. 2013, 42, 173–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, K.B.; Su, Y.H. Photoluminescence of Cu:ZnS, Ag:ZnS, and Au:ZnS nanoparticles applied in Bio-LED. Appl. Phys. B Lasers Opt. 2013, 113, 351–359. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, L.; Durán, A.; Pascual, M. Silicate-based persistent phosphors. Open Ceram 2021, 7, 100150. [Google Scholar] [CrossRef]
- Murayama, Y.; Takeuchi, N.; Aoki, Y.; Matsuzawa, T. Phosphorescent Phosphor. U.S. Patent US5424006, 13 June 1995. [Google Scholar]
- Matsuzawa, T.; Aoki, Y.; Takeuchi, N.; Murayama, Y. A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4:Eu2+, Dy3+. J. Electrochem. Soc. 1996, 143, 2670. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhou, Y.; Lü, M.; Zhang, A.; Ma, Q. Combustion synthesis of long-persistent luminescent MAl2O4: Eu2+, R3+ (M=Sr, Ba, Ca, R= Dy, Nd and La) nanoparticles and luminescence mechanism research. Acta Mater. 2007, 55, 2615–2620. [Google Scholar] [CrossRef]
- Cui, Z.; Jia, G.; Deng, D.; Hua, Y.; Zhao, S.; Huang, L.; Wang, H.; Ma, H.; Xu, S. Synthesis and luminescence properties of glass ceramics containing MSiO3:Eu2+ (M=Ca, Sr, Ba) phosphors for white LED. J. Lumin. 2012, 132, 153–160. [Google Scholar] [CrossRef]
- Lin, Y.; Tang, Z.; Zhang, Z.; Nan, C. Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors. J. Eur. Ceram. Soc. 2003, 23, 175–178. [Google Scholar] [CrossRef]
- Wang, X.-J.; Jia, D.; Yen, W. Mn2+ activated green, yellow, and red long persistent phosphors. J. Lumin. 2003, 102–103, 34–37. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, X. Preparation of a New Long Afterglow Blue- Emitting Sr2MgSi2O7-Based Photoluminescent Phosphor. J. Mater. Sci. Lett. 2001, 7–9. [Google Scholar] [CrossRef]
- Xu, X.; Wang, Y.; Zeng, W.; Gong, Y.; Liu, B. Luminescent properties of the multicolor afterglow phosphors Ca3SnSi2O9: Re3+ (Re = Pr, Tb, Sm). J. Am. Ceram. Soc. 2011, 94, 3632–3635. [Google Scholar] [CrossRef]
- Pan, W.; Ning, G.; Zhang, X.; Wang, J.; Lin, Y.; Ye, J. Enhanced luminescent properties of long-persistent Sr2MgSi2O7:Eu2+, Dy3+ phosphor prepared by the co-precipitation method. J. Lumin. 2008, 128, 1975–1979. [Google Scholar] [CrossRef]
- Song, F.; Donghua, C.; Yuan, Y. Synthesis of Sr2MgSi2O7:Eu, Dy and Sr2MgSi2O7:Eu, Dy, Nd by a modified solid-state reaction and their luminescent properties. J. Alloys Compd. 2008, 458, 564–568. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, B.; Tian, B.; Hua, R.; Sun, J.; Cheng, L.; Zhong, H.; Li, X.; Zhang, J.; Zheng, Y.; et al. Concentration-dependent luminescence and energy transfer of flower-like Y2(MoO4)3: Dy3+ phosphor. J. Alloys Compd. 2011, 509, 6096–6101. [Google Scholar] [CrossRef]
- Jiang, L.; Chang, C.; Mao, D.; Feng, C. Luminescent properties of Ca2MgSi2O7 phosphor activated by Eu2+, Dy3+ and Nd3+. Opt. Mater. 2004, 27, 51–55. [Google Scholar] [CrossRef]
- Shrivastava, R.; Kaur, J.; Dubey, V.; Jaykumar, B. Photoluminescence, trap states and thermoluminescence decay process study of Ca2MgSi2O7: Eu2+, Dy3+ phosphor. Bull. Mater. Sci. 2014, 37, 925–929. [Google Scholar] [CrossRef]
- He, L.; Jia, B.; Che, L.; Li, W.; Sun, W. Preparation and optical properties of afterglow Sr2MgSi2O7: Eu2+, Dy3+ electrospun nanofibers. J. Lumin. 2016, 172, 317–322. [Google Scholar] [CrossRef]
- Wondraczek, L.; Krolikowski, S.; Nass, P. Europium partitioning, luminescence re-absorption and quantum efficiency in (Sr,Ca) akermanite–feldspar bi-phasic glass ceramics. J. Mater. Chem. C 2013, 1, 4078–4086. [Google Scholar] [CrossRef]
- Hölsä, J.; Laamanen, T.; Lastusaari, M.; Novák, P. Isolated Defects in Sr2MgSi2O7: A DFT Study. Phys. Procedia 2012, 29, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Duan, H.; Dong, Y.; Huang, Y.; Hu, Y.; Chen, X. The important role of oxygen vacancies in Sr2MgSi2O7 phosphor. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2016, 380, 1056–1062. [Google Scholar] [CrossRef]
- Wu, H.; Hu, Y.; Wang, Y.; Zeng, B.; Mou, Z.; Deng, L.; Xie, W. Influence on luminescent properties of the Sr2MgSi2O7: Eu2+ by Dy3+, Nd3+ co-doping. J. Alloys Compd. 2009, 486, 549–553. [Google Scholar] [CrossRef]
- Hai, O.; Jiang, H.; Xu, D.; Wang, Y.; Zheng, W.; Luo, T. Interaction of Rare Earth Ions in Sr2MgSi2O7: Eu2+, Dy3+ Material. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2016, 31, 269–273. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, L.; Levy, D.; Zayat, M.; Jiménez, J.; Mather, G.; Durán, A.; Pascual, M. Processing and luminescence of Eu/Dy-doped Sr2MgSi2O7 glass-ceramics. J. Eur. Ceram. Soc. 2021, 41, 811–822. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, L.; Gorni, G.; Mather, G.; Savvin, S.; Cuello, G.; Durán, A.; Pascual, M. X-ray absorption spectroscopy and neutron-diffraction study of persistent luminescent Sr2MgSi2O7 glass-ceramics. Acta Mater. 2021, 215, 117080. [Google Scholar] [CrossRef]
- Pascual, M.J.; Pascual, L.; Durán, A. Determination of the viscosity-temperature curve for glasses on the basis of fixed viscosity points determined by hot stage microscopy. Phys. Chem. Glasses 2001, 42, 61–66. [Google Scholar]
- Pascual, M.J.; Duran, A. A new method for determining fixed viscosity points of glasses. Phys. Chem. Glasses 2005, 46, 512–520. [Google Scholar]
- Reisfeld, R. Spectra and Energy Transfer of Rare Earths in Inorganic Glasses; Springer: Berlin/Heidelberg, Germany, 1973; pp. 53–98. [Google Scholar] [CrossRef]
Sample Name | Emission under UV Lamp (365 nm) | Persistent Blue Emission at RT (Time) | Persistent Blue Emission at 0 °C (Time) |
---|---|---|---|
GC-0.5Eu | Blue | - | - |
GC-0.25Eu-0.5Dy | Blue | 22.96 s | 102.52 s |
GC-1Eu-0.5Dy | Blue | 75.90 s | 268.29 s |
GC-1.2Eu-0.5Dy | Blue | 39.07 s | 146.57 s |
GC-1.6Eu-0.5Dy | Blue | 8.39 s | 15.57 s |
GC-1Eu-1Dy | Blue | 83.33 s | 272.17 s |
GC-2Eu-1Dy | Red | - | - |
Heating Rate | Tg(°C) ± 7 | Tx(°C) ± 9 | Tc1(°C) ± 9 | Tc2(°C) ± 9 |
---|---|---|---|---|
2 °C/min | - | 878 | 986 | 1082 |
5 °C/min | 720 | 891 | 991 | 1085 |
10 °C/min | 720 | 901 | 1006 | 1106 |
20 °C/min | 722 | 909 | 1029 | 1129 |
30 °C/min | 717 | 928 | 1027 | 1141 |
Sample | Tg(°C) ± 7 | Tx(°C) ± 9 | Tc(°C) ± 9 |
---|---|---|---|
G-undoped | 720 | 901 | 1006 |
G-0.5Eu | 721 | 887 | 967 |
G-0.25Eu-0.5Dy | 727 | 895 | 959 |
G-1Eu-0.5Dy | 728 | 897 | 960 |
G-1.2Eu-0.5Dy | 746 | 911 | 989 |
G-1.6Eu-0.5Dy | 737 | 922 | 1000 |
G-1Eu-1Dy | 743 | 897 | 961 |
G-2Eu-1Dy | 748 | 917 | 1000 |
Sample | TFS(°C) ± 10 | TMS(°C) ± 10 | TS(°C) ± 10 | Sphere(°C) ± 10 | THB(°C) ± 3 | TF(°C) ± 3 |
---|---|---|---|---|---|---|
G-undoped | 790 | 910 | 940 | 1000 | 1159 | 1190 |
G-0.5Eu | 780 | 890 | 920 | 1020 | 1190 | 1197 |
G-0.25Eu-0.5Dy | 780 | 1010 | 1030 | 1090 | 1170 | 1190 |
G-1Eu-0.5Dy | 820 | 880 | 1020 | 1100 | 1174 | 1200 |
G-1.2Eu-0.5Dy | 810 | 890 | 990 | 1100 | 1160 | 1176 |
G-1.6Eu-0.5Dy | 840 | 920 | 1030 | 1090 | 1148 | 1159 |
G-1Eu-1Dy | 830 | 950 | 1100 | 1140 | 1160 | 1180 |
G-2Eu-1Dy | 840 | 910 | 948 | 1000 | 1184 | 1195 |
Sample | Glass-Ceramic Density ± 0.01 (g/cm3) |
---|---|
GC-undoped | 3.11 |
GC-0.5Eu | 3.17 |
GC-0.25Eu-0.5Dy | 3.19 |
GC-1Eu-0.5Dy | 3.27 |
GC-1.2Eu-0.5Dy | 3.26 |
GC-1.6Eu-0.5Dy | 3.19 |
GC-1Eu-1Dy | 3.22 |
GC-2Eu-1Dy | 3.21 |
SiO2 | SrO | MgO | Al2O3 | Eu2O3 | Dy2O3 | |
---|---|---|---|---|---|---|
GC-Undoped | ||||||
Theoretical glass composition | 55.0 | 27.0 | 18.0 | - | - | - |
1 Sr2MgSi2O7 | 40.9 | 39.5 | 17.3 | 2.4 | - | - |
2 | 62.1 | 21.1 | 11.7 | 5.1 | - | - |
3 | 60.1 | 21.4 | 16.8 | 1.0 | - | - |
GC-1Eu-0.5Dy | ||||||
Theoretical glass composition | 54.1 | 26.6 | 17.7 | 0 | 0.9 | 0.5 |
1 Sr2MgSi2O7 | 40.9 | 38.1 | 17.9 | 2.0 | 0.5 | 0.2 |
2 | 56.6 | 20.4 | 16.2 | 4.0 | 1.7 | 0.8 |
GC-1Eu-1Dy | ||||||
Theoretical glass composition | 53.9 | 26.4 | 17.6 | 0 | 0.9 | 0.9 |
1 | 50.8 | 34.9 | 6.8 | 1.9 | 2.7 | 2.7 |
2 Sr2MgSi2O7 | 41.1 | 39.5 | 18.0 | 0.8 | 0.3 | 0.0 |
3 | 62.1 | 23.2 | 10.4 | 2.3 | 0.8 | 1.0 |
GC-2Eu-1Dy | ||||||
Theoretical glass composition | 53.4 | 26.2 | 17.4 | 0 | 1.9 | 0.9 |
1 | 64.0 | 26.1 | 1.7 | 2.1 | 4.3 | 1.6 |
2 Sr2MgSi2O7 | 39.7 | 38.4 | 20.0 | 1.3 | 0.4 | 0.0 |
3 | 63.8 | 15.7 | 14.2 | 3.4 | 1.7 | 0.9 |
Sample Name | SiO2 | SrO | MgO | Al2O3 |
---|---|---|---|---|
G-undoped | 51.7 | 29.2 | 16.8 | 2.4 |
G-0.5Eu | 56.7 | 24.4 | 17.3 | 1.6 |
G-0.25Eu-0.5Dy | 50.8 | 27.3 | 18.2 | 3.8 |
G-1Eu-0.5Dy | 56.7 | 24.8 | 17.6 | 0.8 |
G-1.2Eu-0.5Dy | 56.4 | 23.6 | 18.4 | 1.5 |
G-1.6Eu-0.5Dy | 54.2 | 22.6 | 20.7 | 2.5 |
G-1Eu-1Dy | 56.5 | 22.6 | 17.6 | 3.3 |
G-2Eu-1Dy | 55.9 | 23.3 | 18.9 | 1.9 |
GC-05Eu | GC-0.2Eu-0.5Dy | GC-1Eu-0.5Dy | GC-1.2Eu-0.5Dy | GC-1.6Eu-0.5Dy | GC-1Eu-1Dy | GC-2Eu-1Dy |
---|---|---|---|---|---|---|
1.28 ms | 1.27 ms | 0.91 ms | 0.93 ms | 0.97 ms | 0. 89 ms | 1.06 ms |
GC-0.25Eu-0.5Dy | GC-1Eu-0.5Dy | GC-1.2Eu-0.5Dy | GC-1.6Eu-0.5Dy | GC-1Eu-Dy1 |
---|---|---|---|---|
τ1 = 9.4 s τ2 = 52.8 s | τ1 = 10.3 s τ2 = 57.9 s | τ1 = 10.3 s τ2 = 53.6 s | τ1 = 7.7 s τ2 = 39.7 s | τ1 = 14.8 s τ2 = 77.5 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Rodríguez, L.; Balda, R.; Fernández, J.; Durán, A.; Pascual, M.J. Role of Eu2+ and Dy3+ Concentration in the Persistent Luminescence of Sr2MgSi2O7 Glass-Ceramics. Materials 2022, 15, 3068. https://doi.org/10.3390/ma15093068
Fernández-Rodríguez L, Balda R, Fernández J, Durán A, Pascual MJ. Role of Eu2+ and Dy3+ Concentration in the Persistent Luminescence of Sr2MgSi2O7 Glass-Ceramics. Materials. 2022; 15(9):3068. https://doi.org/10.3390/ma15093068
Chicago/Turabian StyleFernández-Rodríguez, Laura, Rolindes Balda, Joaquín Fernández, Alicia Durán, and María Jesús Pascual. 2022. "Role of Eu2+ and Dy3+ Concentration in the Persistent Luminescence of Sr2MgSi2O7 Glass-Ceramics" Materials 15, no. 9: 3068. https://doi.org/10.3390/ma15093068
APA StyleFernández-Rodríguez, L., Balda, R., Fernández, J., Durán, A., & Pascual, M. J. (2022). Role of Eu2+ and Dy3+ Concentration in the Persistent Luminescence of Sr2MgSi2O7 Glass-Ceramics. Materials, 15(9), 3068. https://doi.org/10.3390/ma15093068