Preparation and Properties of Highly Elastic, Lightweight, and Thermally Insulating SiO2 Fibrous Porous Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication Process
2.2. Characterization
3. Results
3.1. Dispersibility of Quartz Fibers
3.2. Characterization of SiO2 Fibrous Porous Materials
3.3. Effect of Heat Treatment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, G.W.; James, D.F. The permeability of fibrous porous media. Can. J Chem. Eng. 1986, 64, 364–374. [Google Scholar] [CrossRef]
- Pradhan, A.K.; Das, D.; Chattopadhyay, R.; Singh, S.N. Effect of 3D fiber orientation distribution on transverse air permeability of fibrous porous media. Powder Technol. 2012, 221, 101–104. [Google Scholar] [CrossRef]
- Chatterjee, A.P. A model for the elastic moduli of three-dimensional fiber networks and nanocomposites. J. Appl. Phys. 2006, 100, 054302. [Google Scholar] [CrossRef]
- Soltani, P.; Johari, M.S.; Zarrebini, M. Effect of 3D fiber orientation on permeability of realistic fibrous porous networks. Powder Technol. 2014, 254, 44–56. [Google Scholar] [CrossRef]
- Li, F.; Huang, X.; Liu, J.-X.; Zhang, G.-J. Sol-gel derived porous ultra-high temperature ceramics. J. Adv. Ceram. 2020, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Aerogel insulation for building applications: A state-of-the-art review. Energy Build. 2011, 43, 761–769. [Google Scholar] [CrossRef] [Green Version]
- Mouchon, E.; Colomban, P. Oxide ceramic matrix/oxide fibre woven fabric composites exhibiting dissipative fracture behaviour. Composites 1995, 26, 175–182. [Google Scholar] [CrossRef]
- Menaa, F.; Abdelghani, A.; Menaa, B. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: Impact for tissue engineering and regenerative medicine. J. Tissue Eng. Regen. Med. 2015, 9, 1321–1338. [Google Scholar] [CrossRef]
- Dong, X.; Liu, J.; Hao, R.; Guo, A.; Hou, Z.; Liu, M. High-temperature elasticity of fibrous ceramics with a bird’s nest structure. J. Eur. Ceram. Soc. 2013, 33, 3477–3481. [Google Scholar] [CrossRef]
- Hou, Z.; Du, H.; Liu, J.; Hao, R.; Dong, X.; Liu, M. Fabrication and properties of mullite fiber matrix porous ceramics by a TBA-based gel-casting process. J. Eur. Ceram. Soc. 2013, 33, 717–725. [Google Scholar] [CrossRef]
- Hao, Y.; Xie, J.; Xu, B.; Hu, B.; Zheng, Y.; Shen, Y. Tunnel elasticity enhancement effect of 3D submicron ceramics (Al2O3, TiO2, ZrO2) fiber on polydimethylsiloxane (PDMS). J. Adv. Ceram. 2021, 10, 502–508. [Google Scholar] [CrossRef]
- Chen, J.; Liao, X.; Wang, M.; Liu, Z.; Zhang, J.; Ding, L.; Gao, L.; Li, Y. Highly flexible, nonflammable and free-standing SiC nanowire paper. Nanoscale 2015, 7, 6374–6379. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.W.; Liang, H.W.; Yu, S.H. Macroscopic-scale assembled nanowire thin films and their functionalities. Chem. Rev. 2012, 112, 4770–4799. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, X.; Wang, N.; Li, Y.; Feng, X.; Huang, Y.; Zhao, C.; Liu, Z.; Fang, M.; Ou, G.; et al. Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges. Sci. Adv. 2017, 3, e1603170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.; Guo, A.; Xue, Y.; Zhang, J.; Liu, Z.; Cao, C.; Zhang, F.; Liu, J. Mechanical evaluations of mullite fibrous ceramics processed by filtration and in situ pyrolysis of organic precursor. J. Eur. Ceram. Soc. 2019, 39, 1329–1335. [Google Scholar] [CrossRef]
- Zhang, R.; Ye, C.; Hou, X.; Li, S.; Wang, B. Microstructure and properties of lightweight fibrous porous mullite ceramics prepared by vacuum squeeze moulding technique. Ceram. Int. 2016, 42, 14843–14848. [Google Scholar] [CrossRef]
- Soares, C.; Padoin, N.; Muller, D.; Hotza, D.; Rambo, C.R. Evaluation of resistances to fluid flow in fibrous ceramic medium. Appl. Math. Model. 2015, 39, 7197–7210. [Google Scholar] [CrossRef]
- Hao, S.; Wang, W.; Tang, H. Experiment Study of Dispersion Uniformity of Short Carbon Fiber Reinforced Silicon Carbide. Appl. Mech. Mater. 2013, 437, 577–581. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Z.F.; Xu, T.Z.; Qiu, J.L.; Zhou, J.M. Glass Fibers as Engineering Materials. Appl. Mech. Mater. 2011, 121–126, 181–185. [Google Scholar] [CrossRef]
- Wang, L.; An, L.; Zhao, J.; Shimai, S.; Mao, X.; Zhang, J.; Liu, J.; Wang, S. High-strength porous alumina ceramics prepared from stable wet foams. J. Adv. Ceram. 2021, 10, 852–859. [Google Scholar] [CrossRef]
- Akbar, A.Y.; Lestari, Y.; Ramadhan, G.; Candra, S.A.; Sugiarti, E. The Influence of Carboxy Methyl Cellulose (CMC) and Solution pH on Carbon Fiber Dispersion in White Cement Matrix. Appl. Mech. Mater. 2014, 493, 661–665. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, Z.; Li, C.; Chen, X.; Zhou, J. Effect of Dispersant on Dispersion of Glass Fiber Suspension. Asian J. Chem. 2014, 26, 5100–5104. [Google Scholar] [CrossRef]
- Lü, K.; Duan, Z.; Liu, X.; Li, Y.; Du, Z. Effect of Dispersant on Fiber-Reinforced Shell for Investment Casting. Int. J. Met. 2020, 14, 1005–1012. [Google Scholar] [CrossRef]
- Sun, J.; Binner, J.; Bai, J. Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography. J. Eur. Ceram. Soc. 2019, 39, 1660–1667. [Google Scholar] [CrossRef]
- Tantra, R.; Schulze, P.; Quincey, P. Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology 2010, 8, 279–285. [Google Scholar] [CrossRef]
- Duval, J.F.L.; Leermakers, F.A.M.; van Leeuwen, H.P. Electrostatic Interactions between Double Layers: Influence of Surface Roughness, Regulation, and Chemical Heterogeneities. Langmuir 2004, 20, 5052–5065. [Google Scholar] [CrossRef]
- Leong, Y.K.; Ong, B.C. Critical zeta potential and the Hamaker constant of oxides in water. Powder Technol. 2003, 134, 249–254. [Google Scholar] [CrossRef]
- Palla, B.J.; Shah, D.O. Stabilization of High Ionic Strength Slurries Using Surfactant Mixtures: Molecular Factors That Determine Optimal Stability. J. Colloid Interface Sci. 2002, 256, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zhang, M.; Feng, Q.; Long, T.; Ou, L.; Zhang, G. Effect of sodium hexametaphosphate on separation of serpentine from pyrite. Trans. Nonferrous Met. Soc. China 2011, 21, 208–213. [Google Scholar] [CrossRef]
- Varga, I.; Csempesz, F.; Zfiray, G. Effect of pH of aqueous ceramic suspensions on colloidal stability and precision of analytical measurements using slurry nebulization inductively coupled plasma atomic emission spectrometry. Spectrochim. Acta Part B At. Spectrosc. 1996, 51, 253–259. [Google Scholar] [CrossRef]
- Dong, Y.; Dong, X.; Li, L.; Wu, J.; Yan, L.; Liu, J.; Guo, A. Lightweight and thermally insulating aluminum borate nanofibrous porous ceramics. Ceram. Int. 2021, 47, 21029–21037. [Google Scholar] [CrossRef]
- Dong, X.; Lv, H.; Sui, G.; Liu, J.; Guo, A.; Xin, T.; Xu, X.; Du, H. Synthesis and properties of lightweight fibrous ceramics with a 3D skeleton structure prepared by infiltration. Mater. Sci. Eng. A 2015, 635, 43–49. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Guo, A.; Xu, X.; Xue, Y.; Yan, L.; Hou, F.; Liu, J. Preparation and Properties of Highly Elastic, Lightweight, and Thermally Insulating SiO2 Fibrous Porous Materials. Materials 2022, 15, 3069. https://doi.org/10.3390/ma15093069
Li Y, Guo A, Xu X, Xue Y, Yan L, Hou F, Liu J. Preparation and Properties of Highly Elastic, Lightweight, and Thermally Insulating SiO2 Fibrous Porous Materials. Materials. 2022; 15(9):3069. https://doi.org/10.3390/ma15093069
Chicago/Turabian StyleLi, Yitian, Anran Guo, Xiaojing Xu, Yunjia Xue, Liwen Yan, Feng Hou, and Jiachen Liu. 2022. "Preparation and Properties of Highly Elastic, Lightweight, and Thermally Insulating SiO2 Fibrous Porous Materials" Materials 15, no. 9: 3069. https://doi.org/10.3390/ma15093069
APA StyleLi, Y., Guo, A., Xu, X., Xue, Y., Yan, L., Hou, F., & Liu, J. (2022). Preparation and Properties of Highly Elastic, Lightweight, and Thermally Insulating SiO2 Fibrous Porous Materials. Materials, 15(9), 3069. https://doi.org/10.3390/ma15093069