Acoustic Performance of Sound Absorbing Materials Produced from Wool of Local Mountain Sheep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Raw Wool
2.1.2. Preparation of Sound Absorbing Materials
2.2. Methods
2.2.1. Measurement of Materials Parameters
2.2.2. Measurement of Sound Absorbing Coefficient
3. Results
3.1. Properties of Materials
3.2. Sound Absorption Capacity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grömer, K.; Saliari, K. Dressing Central European prehistory-the sheep’s contribution. An interdisciplinary study about archaeological textile finds and archaeozoology. Ann. Naturhist. Mus. Wien Serie A 2018, 120, 127–156. [Google Scholar]
- Rast- Eicher, A.; Jørgensen, L.B. Sheep wool in Bronze Age and Iron Age Europe. J. Archaeol. Sci. 2013, 40, 1224–1241. [Google Scholar] [CrossRef]
- Allafi, F.; Hossain, M.S.; Lalung, J.; Shaah, M.; Salehadabi, A.; Ahmad, M.I. Advancements in Applications of Natural Wool Fiber: Review. J. Nat. Fibers 2022, 19, 497–512. [Google Scholar] [CrossRef]
- Johnson, N.A.G.; Wood, E.J.; Ingham, P.E.; McNeil, S.J.; McFarlane, I.D. Wool as a Technical Fibre. J. Text. Inst. 2003, 94, 26–41. [Google Scholar] [CrossRef]
- Korjenic, A.; Klarić, S.; Hadžić, A.; Korjenic, S. Sheep Wool as a Construction Material for Energy Efficiency Improvement. Energies 2015, 8, 5765–5781. [Google Scholar] [CrossRef] [Green Version]
- Rubino, C.; Bonet Aracil, M.; Liuzzi, S.; Stefanizzi, P.; Martellotta, F. Wool waste used as sustainable nonwoven for building applications. J. Clean. Prod. 2021, 278, 123905. [Google Scholar] [CrossRef]
- Zach, J.; Korjenic, A.; Petránek, V.; Hroudová, J.; Bednar, T. Performance evaluation and research of alternative thermal insulations based on sheep wool. Energy Build. 2012, 49, 246–253. [Google Scholar] [CrossRef]
- Broda, J.; Gawloski, A.; Przybylo, S.; Binias, D.; Rom, M.; Grzybowska-Pietras, J.; Laszczak, R. Innovative wool geotextiles designed for erosion protection. J. Ind. Text. 2017, 48, 599–611. [Google Scholar] [CrossRef]
- Broda, J.; Gawlowski, A. Influence of Sheep Wool on Slope Greening. J. Nat. Fibers 2020, 17, 820–832. [Google Scholar] [CrossRef]
- Marczak, D.; Lejcus, K.; Misiewicz, J. Characteristics of biodegradable textiles used in environmental engineering: A comprehensive review. J. Clean. Prod. 2020, 268, 122129. [Google Scholar]
- Radetić, M.M.; Jocić, D.M.; Jovančić, P.M.; Petrović, Z.; Thomas, H.F. Recycled Wool-Based Nonwoven Material as an Oil Sorbent. Environ. Sci. Technol. 2003, 37, 1008–1012. [Google Scholar] [CrossRef]
- Radetic, M.; Ilic, V.; Radojevic, D.; Miladinovic, R.; Jocic, D.; Jovancic, P. Efficiency of recycled wool-based nonwoven material for the removal of oils from water. Chemosphere 2008, 70, 525–530. [Google Scholar] [CrossRef]
- Laurie, S.H.; Barraclough, A. Use of waste wool for the removal of mercury from industrial effluents, particularly those from the chlor-alkali industry. Int. J. Environ. Stud. 1979, 14, 139–149. [Google Scholar] [CrossRef]
- Naik, R.; Wen, G.; Kureau, S.; Uedono, A.; Wand, X.; Liu, X.; Cookson, P.G.; Smith, S.V. Metal ion binding properties of novel wool powders. J. Appl. Polym. Sci. 2010, 115, 1642–1650. [Google Scholar] [CrossRef]
- Saha, S.; Zubair, Z.; Khosa, M.A.; Song, S.; Ullah, A. Keratin and Chitosan Biosorbents for Wastewater Treatment: A Review. J. Polym. Environ. 2019, 27, 1389–1403. [Google Scholar] [CrossRef]
- Ballagh, K.O. Acoustical properties of wool. Appl. Acoust. 1996, 48, 101–120. [Google Scholar] [CrossRef]
- Asdrubali, F.; Schiavoni, S.; Horoshenkov, K. A Review of Sustainable Materials for Acoustic Applications. Build. Acoust. 2012, 19, 283–312. [Google Scholar] [CrossRef]
- Bousshine, S.; Ouakarrouch, M.; Bybi, A.; Laaroussi, N.; Garoum, M.; Tilioua, A. Acoustical and thermal characterization of sustainable materials derived from vegetable, agricultural, and animal fibers. Appl. Acoust. 2022, 187, 108520. [Google Scholar] [CrossRef]
- Del Rey, R.; Uris, A.; Alba, J.; Candelas, P. Characterization of Sheep Wool as a Sustainable Material for Acoustic Applications. Materials 2017, 10, 1277. [Google Scholar] [CrossRef] [Green Version]
- Nordin, M.; Wan, L.; Zainulabidin, M.; Kassim, A.; Mohd Aripin, A. Research finding in natural fibers sound absorbing material. ARPN J. Eng. Appl. Sci. 2016, 11, 8579–8584. [Google Scholar]
- Seddeq, H.S.; Aly, N.M.; Marwa, A.; Elshakankery, M.H. Investigation on sound absorption properties for recycled fibrous materials. J. Ind. Text. 2012, 43, 56–73. [Google Scholar] [CrossRef]
- Yang, S.; Yu, W.; Pan, N. Investigation of the sound-absorbing behavior of fiber assemblies. Text. Res. J. 2010, 81, 673–682. [Google Scholar] [CrossRef]
- Broda, J.; Kobiela-Mendrek, K.; Rom, M.; Grzybowska-Pietras, J.; Przybylo, S.; Laszczak, R. Biodegradation of Wool Used for the Production of Innovative Geotextiles Designed to Erosion Control. RILEM Bookseries 2016, 12, 351–361. [Google Scholar]
- Korniłłowicz-Kowalska, T.; Bohacz, J. Biodegradation of keratin waste: Theory and practical aspects. Waste Manag. 2011, 31, 1689–1701. [Google Scholar] [CrossRef]
- Cardamone, J.M. Flame resistant wool and wool blends. In Handbook of Fire Resistant Textiles; Kilinc, F.S., Ed.; Woodhead Publishing: Sawston, UK, 2013; pp. 245–271. [Google Scholar]
- Berardi, U.; Iannace, G.; di Gabriele, M. Characterization of sheep wool panels for room acoustic applications. Proc. Meet. Acoust. 2016, 28, 15001. [Google Scholar]
- Bosia, D.; Savio, L.; Thiebat, F.; Patrucco, A.; Fantucci, S.; Piccablotto, G.; Marino, D. Sheep Wool for Sustainable Architecture. Energy Procedia 2015, 78, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Corscadden, K.W.; Biggs, J.N.; Stiles, D.K. Sheep’s wool insulation: A sustainable alternative use for a renewable resource? Resour. Conserv. Recycl. 2014, 86, 9–15. [Google Scholar] [CrossRef]
- Patnaik, A.; Mvubu, M.; Muniyasamy, S.; Botha, A.; Anandjiwala, R.D. Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energy Build. 2015, 92, 161–169. [Google Scholar] [CrossRef]
- Qui, H.; Enhui, Y. Effect of Thickness, Density and Cavity Depth on the Sound Absorption Properties of Wool Boards. Autex Res. J. 2018, 18, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Tămaş-Gavrea, D.R.; Dénes, T.O.; Iştoan, R.; Tiuc, A.E.; Manea, D.L.; Vasile, O. A Novel Acoustic Sandwich Panel Based on Sheep Wool. Coatings 2020, 10, 148. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Wells, C.M.; Carrington, C.G.; Hewitt, N.J. Thermal conductivity of wool and wool–hemp insulation. Int. J. Energy Res. 2006, 30, 37–49. [Google Scholar] [CrossRef]
- Hegyi, A.; Bulacu, C.; Szilagyi, H.; Lazarescu, A.V.; Matja, V.; Vizureanu, P.; Sandu, M. Improving Indoor Air Quality by Using Sheep Wool Thermal Insulation. Materials 2021, 14, 2443. [Google Scholar] [CrossRef] [PubMed]
- Mansour, E.; Curling, S.; Stéphan, A.; Ormondroyd, G. Absorption of volatile organic compounds by different wool types. Green Mater. 2016, 4, 1–7. [Google Scholar] [CrossRef]
- Arsalan, A.; Memon, H.; Khoso, A. Considerations while designing Acoustic Home Textiles: A Review. J. Text. Appar. Technol. Manag. 2015, 9, 1–29. [Google Scholar]
- Segura Alcaraz, M.P.; Bonet-Aracil, M.; Julià Sanchís, E.; Segura Alcaraz, J.G.; Seguí, I.M. Textiles in architectural acoustic conditioning: A review. J. Text. Inst. 2022, 113, 166–172. [Google Scholar] [CrossRef]
- Soltani, P.; Zerrebini, M. The analysis of acoustical characteristics and sound absorption coefficient of woven fabrics. Text. Res. J. 2012, 82, 875–882. [Google Scholar] [CrossRef]
- Soltani, P.; Zarrebini, M. Acoustic performance of woven fabrics in relation to structural parameters and air permeability. J. Text. Inst. 2013, 104, 1011–1016. [Google Scholar] [CrossRef]
- Ford, R.D.; Bakker, P.G.H. The acoustical properties of various carpet and underlay combinations. J. Text. Inst. 1984, 75, 164–174. [Google Scholar] [CrossRef]
- Küçük, M.; Korkmaz, Y. The effect of physical parameters on sound absorption properties of natural fiber mixed nonwoven composites. Text. Res. J. 2012, 82, 2043–2053. [Google Scholar] [CrossRef]
- Puranik, P.R.; Parmar, R.; Rana, P.P.; Ghandhy, S.S.; Gate, M. Nonwoven acoustic textiles—A review. J. Adv. Res. Sci. Eng. Technol. 2014, 5, 8. [Google Scholar]
- Sigaard, A.S.; Berg, L.L.; Klepp, I.G. Woolume: Potential New Products from Vacant Wool. 2021. Available online: https://hdl.handle.net/11250/2839326 (accessed on 15 March 2022).
- Sigaard, A.S.; Haugronning, V. Woolume: Mapping the Market for Acoustic and Sound Absorbing Products Made of Wool. 2021. Available online: https://oda.oslomet.no/oda-xmlui/bitstream/handle/11250/2773899/SIFO-Report%209-2021%20Woolume.pdf?sequence=1&isAllowed=y (accessed on 15 March 2022).
- Ghermezgoli, Z.M.; Moezzi, M.; Yekrang, J.; Rafat, S.A.; Soltani, P.; Barez, F. Sound absorption and thermal insulation characteristics of fabrics made of pure and crossbred sheep waste wool. J. Build. Eng. 2021, 35, 102060. [Google Scholar] [CrossRef]
- Kicinska- Jakubowska, A.; Morales Villavicencio, A.; Zimniewska, M.; Przybylska, P.; Kwiatkowska, E. Evaluation of Wool Quality Parameters of Polish Sheep Breeds. J. Nat. Fibers 2021, 18, 1–8. [Google Scholar] [CrossRef]
- Milán, M.J.; Frendi, F.; González-González, R.; Caja, G. Cost structure and profitability of Assaf dairy sheep farms in Spain. J. Dairy Sci. 2014, 97, 5239–5249. [Google Scholar] [CrossRef] [PubMed]
- Rajabinejad, H.; Buciscanu, I.I.; Maier, S. Current Approaches for Raw Wool Waste Management and Unconventional Valorization: A Review. Environ. Eng. Manag. J. 2018, 18, 1439–1456. [Google Scholar]
- Vagnoni, E.; Carrino, C.; Dibenedetto, N.; Pieragostini, E.; Consenti, B. The enhancement of native sheep’s wool: Three case studies from some Italian regions. Small Rumin. Res. 2015, 135, 85–89. [Google Scholar] [CrossRef]
- Haugrønning, H.; Broda, J.; Espelien, I.S.; Klepp, I.G.; Kobiela-Mendrek, K.; Rom, M.; Sigaard, A.S.; Tobiasson, T.S. Upping the WOOLUME: Waste Prevention Based on Optimal Use of Materials. In Local, Slow and Sustainable Fashion; Klepp, I.G., Tobiasson, T.S., Eds.; Palgrave Macmillan: Cham, Switzerland, 2022; Volume 2, pp. 61–82. [Google Scholar]
- Broda, J.; Bączek, M. Acoustic Properties of Multi-Layer Wool Nonwoven Structures. J. Nat. Fibers 2020, 17, 1156–1581. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Xu, Y.; Bao, W. The acoustic characteristics of dual-layered porous nonwovens: A theoretical and experimental analysis. J. Text. Inst. 2014, 105, 1076–1088. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X. A Comparative Study on the Felting Propensity of Animal Fibers. Text. Res. J. 2007, 77, 957–963. [Google Scholar]
- Gurkan Unal, P.; Atav, R. Determination of the relationship between fiber characteristics and felting tendency of luxury fibers from various origins. Text. Res. J. 2017, 88, 636–643. [Google Scholar] [CrossRef]
- Asm, R.; Shakyawar, D.; Kumar, A.; Pareek, P.; Temani, P. Feltability of coarse wool and its application as technical felt. Indian J. Fibre Text. Res. 2013, 38, 395–399. [Google Scholar]
- Kartofelev, D.; Stulov, A. Propagation of deformation waves in wool felt. Acta Mech. 2014, 225, 3103–3113. [Google Scholar] [CrossRef]
- Kartofelev, D.; Stulov, A. Wave propagation and dispersion in microstructured wool felt. Wave Motion 2015, 57, 23–33. [Google Scholar] [CrossRef]
- Silva, P.; Navarro, M.; Bessa, J.; Coelho, A.; Cunha, F.; Fangueiro, R. Influence of Fibre Diameter on the Wool-Based Felt Properties. Mater. Circ. Econ. 2022, 4, 3. [Google Scholar] [CrossRef]
- Shoshani, Y.Z.; Wilding, M.A. Effect of Pile Parameters on the Noise Absorption Capacity of Tufted Carpets. Text. Res. J. 1991, 61, 736–742. [Google Scholar] [CrossRef]
- Shoshani, Y.Z. Effect of Nonwoven Backings on the Noise Absorption Capacity of Tufted Carpets. Text. Res. J. 1990, 60, 452–456. [Google Scholar] [CrossRef]
- Kücük, M.; Korkmaz, Y.N. Acoustic and Thermal Properties of Polypropylene Carpets: Effect of Pile Length and Loop Density. Fibers Polym. 2019, 20, 1519–1525. [Google Scholar] [CrossRef]
- Kücük, M.; Korkmaz, Y.N. Sound absorption properties of acrylic carpets. J. Text. Inst. 2017, 108, 1398–1405. [Google Scholar] [CrossRef]
Material | Symbol | Thickness mm | Surface Density g/m2 | Air Permeability l/m2/s |
---|---|---|---|---|
felt | F1 | 9.9 | 815 | 890 |
F2 | 19.5 | 1550 | 512 | |
ring spun yarn cut piles | RC12 | 14.0 | 3700 | 98 |
RC16 | 16.0 | 4100 | 60 | |
ring spun yarn loop piles | RL12 | 14.9 | 3500 | 230 |
RL16 | 15.8 | 4200 | 80 | |
core rug yarn | CL12 | 14.2 | 4000 | 173 |
CL16 | 18.1 | 4800 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobiela-Mendrek, K.; Bączek, M.; Broda, J.; Rom, M.; Espelien, I.; Klepp, I. Acoustic Performance of Sound Absorbing Materials Produced from Wool of Local Mountain Sheep. Materials 2022, 15, 3139. https://doi.org/10.3390/ma15093139
Kobiela-Mendrek K, Bączek M, Broda J, Rom M, Espelien I, Klepp I. Acoustic Performance of Sound Absorbing Materials Produced from Wool of Local Mountain Sheep. Materials. 2022; 15(9):3139. https://doi.org/10.3390/ma15093139
Chicago/Turabian StyleKobiela-Mendrek, Katarzyna, Marcin Bączek, Jan Broda, Monika Rom, Ingvild Espelien, and Ingun Klepp. 2022. "Acoustic Performance of Sound Absorbing Materials Produced from Wool of Local Mountain Sheep" Materials 15, no. 9: 3139. https://doi.org/10.3390/ma15093139
APA StyleKobiela-Mendrek, K., Bączek, M., Broda, J., Rom, M., Espelien, I., & Klepp, I. (2022). Acoustic Performance of Sound Absorbing Materials Produced from Wool of Local Mountain Sheep. Materials, 15(9), 3139. https://doi.org/10.3390/ma15093139