Degradation Behavior and Mechanical Integrity of a Mg-0.7Zn-0.6Ca (wt.%) Alloy: Effect of Grain Sizes and Crystallographic Texture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microstructural, Structural and Composition Characterization
2.3. Degradation Evaluation
2.3.1. Electrochemical Characterization
2.3.2. Hydrogen Evolution Test
2.3.3. Immersion Test
2.3.4. Magnesium Release
2.3.5. pH Evolution Monitoring
2.4. Mechanical Integrity
2.5. In Vitro Evaluation
2.5.1. Cytotoxicity Assays
2.5.2. Differentiation Assays
2.5.3. Antibacterial Test
2.6. Statistical Analysis
3. Results
3.1. Microstructural Characterization
3.2. Degradation Assessment
3.2.1. Electrochemical
3.2.2. Hydrogen Evolution
3.2.3. Long Term DegradationImmersion Test
Immersion Test
3.2.4. Mg Concentration
3.2.5. pH Variation
3.3. Mechanical Properties
3.4. Biological Assessment
3.4.1. Cytotoxicity, In Vitro Studies
3.4.2. Differentiation Assays
3.4.3. Antibacterial
4. Discussion
4.1. Degradation Rate
4.2. Mechanical Integrity
4.3. Biological Response
5. Conclusions
- No effect is observed for the short-term (4.5 h) degradation rate determined with electrochemical and hydrogen evolution measurements because competing factors determine the DR.
- The weak basal texture allows basal <a> slip as an important deformation mechanism. In addition, the smaller grain size induces a higher elongation at failure for the ZX11-350 compared to the ZX11-450 under pristine conditions. Moreover, it is hypothesized that the precipitates at grain boundaries block the dislocations and promote intergranular corrosion leading to the material’s fragilization. In addition to that, nucleation of cracks along twins has been observed to lower elongation to fracture in the ZX11-450 samples.
- The precipitates located at grain boundaries serve as corrosion nucleation pits, which, combined with a weaker basal texture and larger grain size, results in an increased long-term degradation rate at 7 and 15 days of immersion for the ZX11-450 condition, in comparison with the ZX11-350. Nevertheless, this effect is not observed for more extended periods.
- The increased degradation rate of the ZX11-450 induces a higher reduction of the elongation at failure and a slight reduction in the yield strength after 15 days of immersion compared to the ZX11-350 condition. However, no further changes were observed afterward.
- A higher release of Mg ions is observed for the ZX11-350 than for the ZX11-450. Nevertheless, no significant cytotoxic effects were observed.
- Both annealing conditions revealed osteoinductive properties and enhanced antibacterial activity in S. aureus and S. epidermidis strains without significant differences.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agarwal, S.; Curtin, J.; Duffy, B.; Jaiswal, S. Biodegradable Magnesium Alloys for Orthopaedic Applications: A Review on Corrosion, Biocompatibility and Surface Modifications. Mater. Sci. Eng. C 2016, 68, 948–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, D.; Witte, F.; Lu, F.; Wang, J.; Li, J.; Qin, L. Current Status on Clinical Applications of Magnesium-Based Orthopaedic Implants: A Review from Clinical Translational Perspective. Biomaterials 2017, 112, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Willumeit-Römer, R.; Ahmad Agha, N.; Luthringer, B. Degradable Magnesium Implants—Assessment of the Current Situation. In The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2018; Part F7, pp. 405–411. [Google Scholar] [CrossRef]
- Grillo, C.A.; Alvarez, F.; Fernández Lorenzo De Mele, M.A. Degradation of Bioabsorbable Mg-Based Alloys: Assessment of the Effects of Insoluble Corrosion Products and Joint Effects of Alloying Components on Mammalian Cells. Mater. Sci. Eng. C 2016, 58, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.; Esfahani, S.N.; Poorganji, B.; Dean, D.; Elahinia, M. Resorbable Bone Fixation Alloys, Forming, and Post-Fabrication Treatments. Mater. Sci. Eng. C 2017, 70, 870–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, R.; Victoria-Hernandez, J.; Jiang, P.; Willumeit-Römer, R.; Luthringer-Feyerabend, B.; Yi, S.; Letzig, D.; Feyerabend, F. In Vitro Evaluation of the ZX11 Magnesium Alloy as Potential Bone Plate: Degradability and Mechanical Integrity. Acta Biomater. 2019, 97, 608–622. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Hamzah, E.; Low, H.T.; Kasiri-Asgarani, M.; Farahany, S.; Akbari, E.; Cho, M.H. Fabrication of Biodegradable Zn-Al-Mg Alloy: Mechanical Properties, Corrosion Behavior, Cytotoxicity and Antibacterial Activities. Mater. Sci. Eng. C 2017, 73, 215–219. [Google Scholar] [CrossRef]
- Miura, C.; Shimizu, Y.; Imai, Y.; Mukai, T.; Yamamoto, A.; Sano, Y.; Ikeo, N.; Isozaki, S.; Takahashi, T.; Oikawa, M.; et al. In Vivo Corrosion Behaviour of Magnesium Alloy in Association with Surrounding Tissue Response in Rats. Biomed. Mater. 2016, 11, 025001. [Google Scholar] [CrossRef]
- Berglund, I.S.; Jacobs, B.Y.; Allen, K.D.; Kim, S.E.; Pozzi, A.; Allen, J.B.; Manuel, M.V. Peri-Implant Tissue Response and Biodegradation Performance of a Mg-1.0Ca-0.5Sr Alloy in Rat Tibia. Mater. Sci. Eng. C 2016, 62, 79–85. [Google Scholar] [CrossRef]
- Liu, J.; Wang, P.; Chu, C.C.; Xi, T. A Novel Biodegradable and Biologically Functional Arginine-Based Poly(Ester Urea Urethane) Coating for Mg-Zn-Y-Nd Alloy: Enhancement in Corrosion Resistance and Biocompatibility. J. Mater. Chem. B 2017, 5, 1787–1802. [Google Scholar] [CrossRef]
- Lee, J.W.; Han, H.S.; Han, K.J.; Park, J.; Jeon, H.; Ok, M.R.; Seok, H.K.; Ahn, J.P.; Lee, K.E.; Lee, D.H.; et al. Long-Term Clinical Study and Multiscale Analysis of in Vivo Biodegradation Mechanism of Mg Alloy. Proc. Natl. Acad. Sci. USA 2016, 113, 716–721. [Google Scholar] [CrossRef] [Green Version]
- Witte, F. The History of Biodegradable Magnesium Implants: A Review. Acta Biomater. 2010, 6, 1680–1692. [Google Scholar] [CrossRef] [PubMed]
- Kraus, T.; Fischerauer, S.F.; Hänzi, A.C.; Uggowitzer, P.J.; Löffler, J.F.; Weinberg, A.M. Magnesium Alloys for Temporary Implants in Osteosynthesis: In Vivo Studies of Their Degradation and Interaction with Bone. Acta Biomater. 2012, 8, 1230–1238. [Google Scholar] [CrossRef] [PubMed]
- Cihova, M.; Martinelli, E.; Schmutz, P.; Myrissa, A.; Schäublin, R.; Weinberg, A.M.; Uggowitzer, P.J.; Löffler, J.F. The Role of Zinc in the Biocorrosion Behavior of Resorbable Mg–Zn–Ca Alloys. Acta Biomater. 2019, 100, 398–414. [Google Scholar] [CrossRef] [PubMed]
- Holweg, P.; Herber, V.; Ornig, M.; Hohenberger, G.; Donohue, N.; Puchwein, P.; Leithner, A.; Seibert, F. A Lean Bioabsorbable Magnesium-Zinc- Calcium Alloy ZX00 Used for Operative Treatment of Medial Malleolus Fractures. Bone Jt. Res. 2020, 9, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Lu, H.; Sun, J. Long-Term in Vivo Evolution of High-Purity Mg Screw Degradation—Local and Systemic Effects of Mg Degradation Products. Acta Biomater. 2018, 71, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Lee, K.B.; Kim, S.Y.; Bode, K.; Jang, Y.S.; Kwon, T.Y.; Jeon, M.H.; Lee, M.H. Gas Formation and Biological Effects of Biodegradable Magnesium in a Preclinical and Clinical Observation. Sci. Technol. Adv. Mater. 2018, 19, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.; Shadanbaz, S.; Woodfield, T.B.F.; Staiger, M.P.; Dias, G.J. Magnesium Biomaterials for Orthopedic Application: A Review from a Biological Perspective. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2014, 102, 1316–1331. [Google Scholar] [CrossRef]
- Abdel-Gawad, S.A.; Shoeib, M.A. Corrosion Studies and Microstructure of Mg−Zn−Ca Alloys for Biomedical Applications. Surf. Interfaces 2019, 14, 108–116. [Google Scholar] [CrossRef]
- Zhang, B.; Hou, Y.; Wang, X.; Wang, Y.; Geng, L. Mechanical Properties, Degradation Performance and Cytotoxicity of Mg-Zn-Ca Biomedical Alloys with Different Compositions. Mater. Sci. Eng. C 2011, 31, 1667–1673. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Y.; Geng, L.; Lu, C. Effects of Calcium on Texture and Mechanical Properties of Hot-Extruded Mg-Zn-Ca Alloys. Mater. Sci. Eng. A 2012, 539, 56–60. [Google Scholar] [CrossRef]
- Zeng, Z.R.; Bian, M.Z.; Xu, S.W.; Davies, C.H.J.; Birbilis, N.; Nie, J.F. Effects of Dilute Additions of Zn and Ca on Ductility of Magnesium Alloy Sheet. Mater. Sci. Eng. A 2016, 674, 459–471. [Google Scholar] [CrossRef]
- Liu, M.; Qiu, D.; Zhao, M.C.; Song, G.; Atrens, A. The Effect of Crystallographic Orientation on the Active Corrosion of Pure Magnesium. Scr. Mater. 2008, 58, 421–424. [Google Scholar] [CrossRef]
- Hielscher, R.; Schaeben, H. A Novel Pole Figure Inversion Method: Specification of the MTEX Algorithm Research Papers. J. Appl. Crystallogr. 2008, 41, 1024–1037. [Google Scholar] [CrossRef]
- Millán-Ramos, B.; Morquecho-Marín, D.; Silva-Bermudez, P.; Ramírez-Ortega, D.; Depablos-Rivera, O.; García-López, J.; Fernández-Lizárraga, M.; Victoria-Hernández, J.; Letzig, D.; Almaguer-Flores, A.; et al. Biocompatibility and Electrochemical Evaluation of ZrO2 Thin Films Deposited by Reactive Magnetron Sputtering on MgZnCa Alloy. J. Magnes. Alloys 2021, 9, 2019–2038. [Google Scholar] [CrossRef]
- ASTM Standard G102–89; Standard Practice for Electrochemical, Calculation of Corrosion Rates and Related Information from Measurements. ASTM International: West Conshohocken, PA, USA, 2004.
- ASTM E8 ASTM E8/E8M; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2009; Volume I, pp. 1–27. [CrossRef]
- Victoria-hernández, J.; Yi, S.; Klaumünzer, D.; Letzig, D. Recrystallization Behavior and Its Relationship with Deformation Mechanisms of a Hot Rolled Mg-Zn-Ca-Zr Alloy. Mater. Sci. Eng. A 2019, 761, 138054. [Google Scholar] [CrossRef]
- Wright, S.I.; Nowell, M.M.; Field, D.P. A Review of Strain Analysis Using Electron Backscatter Diffraction. Microsc. Microanal. 2011, 17, 316–329. [Google Scholar] [CrossRef]
- Shi, Z.; Liu, M.; Atrens, A. Measurement of the Corrosion Rate of Magnesium Alloys Using Tafel Extrapolation. Corros. Sci. 2010, 52, 579–588. [Google Scholar] [CrossRef]
- Tong, L.B.; Zhang, Q.X.; Jiang, Z.H.; Zhang, J.B.; Meng, J.; Cheng, L.R.; Zhang, H.J. Microstructures, Mechanical Properties and Corrosion Resistances of Extruded Mg-Zn-Ca-XCe/La Alloys. J. Mech. Behav. Biomed. Mater. 2016, 62, 57–70. [Google Scholar] [CrossRef]
- Moreno, L.; Mohedano, M.; Arrabal, R.; Matykina, E. Development and screening of (Ca-P-Si-F)-PEO coatings for biodegradability control of Mg-Zn-Ca alloys. J. Magnes. Alloys, 2022; in press. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Zhu, S.J.; Wang, L.G.; Guo, R.M.; Yue, G.C.; Guan, S.K. Microstructures and Degradation Mechanism in Simulated Body Fluid of Biomedical Mg-Zn-Ca Alloy Processed by High Pressure Torsion. Mater. Des. 2016, 96, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Dou, J.; Zhao, Y.; Lu, L.; Gu, G.; Yu, H.; Chen, C. Effect of the Second-Step Voltages on the Structural and Corrosion Properties of Silicon-Calcium-Phosphate (Si-CaP) Coatings on Mg-Zn-Ca Alloy. R. Soc. Open Sci. 2018, 5, 172410. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.; Hou, R.; Zhu, S.; Guan, S. A Robust Calcium Carbonate (CaCO3) Coating on Biomedical MgZnCa Alloy for Promising Corrosion Protection. Corros. Sci. 2022, 198, 110124. [Google Scholar] [CrossRef]
- Yin, P.; Li, N.F.; Lei, T.; Liu, L.; Ouyang, C. Effects of Ca on Microstructure, Mechanical and Corrosion Properties and Biocompatibility of Mg-Zn-Ca Alloys. J. Mater. Sci. Mater. Med. 2013, 24, 1365–1373. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Feng, X.; Huang, Q.; Li, Y.; Yang, Y. Effect of the Microstructure Parameters on the Corrosion Characteristics of Mg-Zn-Ca Alloy with Columnar Structure. J. Magnes. Alloys, 2022; in press. [Google Scholar] [CrossRef]
- Song, J.; Gao, Y.; Liu, C.; Chen, Z. The Effect of Sr Addition on the Microstructure and Corrosion Behaviour of a Mg-Zn-Ca Alloy. Surf. Coat. Technol. 2022, 437, 128328. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, L.; Huang, G.S.; Wang, G.G.; Jiang, B.; Pan, F.S. Microstructure and Corrosion Properties of Mg–0.5Zn–0.2Ca–0.2Ce Alloy with Different Processing Conditions. Rare Met. 2021, 40, 1924–1931. [Google Scholar] [CrossRef]
- Morquecho-Marín, D.; Silva-Bermudez, P.; Millán-Ramos, B.; Victoria-Hernández, J.; Letzig, D.; Ramírez-Ortega, D.; Depablos-Rivera, O.; García-López, J.; Barrera-Ortega, C.C.; Rodil, S.E. Unexpected Cytotoxicity of TiO2-Coated Magnesium Alloys. Mater. Lett. 2020, 276, 128236. [Google Scholar] [CrossRef]
- Witte, F.; Hort, N.; Vogt, C.; Cohen, S.; Kainer, K.U.; Willumeit, R.; Feyerabend, F. Degradable Biomaterials Based on Magnesium Corrosion. Curr. Opin. Solid State Mater. Sci. 2008, 12, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Willumeit, R.; Fischer, J.; Feyerabend, F.; Hort, N.; Bismayer, U.; Heidrich, S.; Mihailova, B. Chemical Surface Alteration of Biodegradable Magnesium Exposed to Corrosion Media. Acta Biomater. 2011, 7, 2704–2715. [Google Scholar] [CrossRef]
- Jiang, P.; Blawert, C.; Hou, R.; Bohlen, J.; Konchakova, N. A Comprehensive Comparison of the Corrosion Performance, Fatigue Behavior and Mechanical Properties of Micro-Alloyed MgZnCa and MgZnGe Alloys. Mater. Des. 2020, 185, 108285. [Google Scholar] [CrossRef]
- Chino, Y.; Sassa, K.; Huang, X.; Suzuki, K.; Mabuchi, M. Effects of Zinc Concentration on the Stretch Formability at Room Temperature of the Rolled Mg-Zn-Ca Alloys. Nippon Kinzoku Gakkaishi/J. Jpn. Inst. Met. 2011, 75, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Fischer, J.; Pröfrock, D.; Hort, N.; Willumeit, R.; Feyerabend, F. Reprint of: Improved Cytotoxicity Testing of Magnesium Materials. Mater. Sci. Eng. B 2011, 176, 1773–1777. [Google Scholar] [CrossRef]
- Bianco, P.; Fisher, L.W.; Young, M.F.; Termine, J.D.; Robey, P.G. Expression of Bone Sialoprotein (BSP) in Developing Human Tissues. Calcif. Tissue Int. 1991, 49, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Hauschka, P.V.; Lian, J.B.; Cole, D.E.; Gundberg, C.M. Osteocalcin and Matrix Gla Protein: Vitamin K-Dependent Proteins in Bone. Physiol. Rev. 1989, 69, 990–1047. [Google Scholar] [CrossRef]
- Sodek, J.; Chen, J.; Nagata, T.; Kasugai, S.; Todescan, R., Jr.; Li, I.W.S.; Kim, R.H. Regulation of Osteopontin Expression in Osteoblasts. Ann. N. Y. Acad. Sci. 1995, 760, 223–241. [Google Scholar] [CrossRef]
- Burmester, A.; Luthringer, B.; Willumeit, R.; Feyerabend, F. Comparison of the Reaction of Bone-Derived Cells to Enhanced MgCl2-Salt Concentrations. Biomatter 2014, 4, e967616. [Google Scholar] [CrossRef] [Green Version]
- Yoshizawa, S.; Brown, A.; Barchowsky, A.; Sfeir, C. Magnesium Ion Stimulation of Bone Marrow Stromal Cells Enhances Osteogenic Activity, Simulating the Effect of Magnesium Alloy Degradation. Acta Biomater. 2014, 10, 2834–2842. [Google Scholar] [CrossRef]
- Chaya, A.; Yoshizawa, S.; Verdelis, K.; Myers, N.; Costello, B.J.; Chou, D.T.; Pal, S.; Maiti, S.; Kumta, P.N.; Sfeir, C. In Vivo Study of Magnesium Plate and Screw Degradation and Bone Fracture Healing. Acta Biomater. 2015, 18, 262–269. [Google Scholar] [CrossRef]
- Wu, L.; Feyerabend, F.; Schilling, A.F.; Willumeit-Römer, R.; Luthringer, B.J.C. Effects of Extracellular Magnesium Extract on the Proliferation and Differentiation of Human Osteoblasts and Osteoclasts in Coculture. Acta Biomater. 2015, 27, 294–304. [Google Scholar] [CrossRef]
- Wang, J.L.; Xu, J.K.; Hopkins, C.; Chow, D.H.K.; Qin, L. Biodegradable Magnesium-Based Implants in Orthopedics—A General Review and Perspectives. Adv. Sci. 2020, 7, 1902443. [Google Scholar] [CrossRef]
- Lin, S.; Yang, G.; Jiang, F.; Zhou, M.; Yin, S.; Tang, Y.; Tang, T.; Zhang, Z.; Zhang, W.; Jiang, X. A Magnesium-Enriched 3D Culture System That Mimics the Bone Development Microenvironment for Vascularized Bone Regeneration. Adv. Sci. 2019, 6, 1900209. [Google Scholar] [CrossRef]
- Südholz, A.D.; Kirkland, N.T.; Buchheit, R.G.; Birbilis, N. Electrochemical Properties of Intermetallic Phases. Electrochem. Solid-State Lett. 2010, 14, C5. [Google Scholar] [CrossRef]
- Bahmani, A.; Arthanari, S.; Shin, K.S. Formulation of Corrosion Rate of Magnesium Alloys Using Microstructural Parameters. J. Magnes. Alloys 2020, 8, 134–149. [Google Scholar] [CrossRef]
- Song, G.; Xu, Z. Crystal Orientation and Electrochemical Corrosion of Polycrystalline Mg. Corros. Sci. 2012, 63, 100–112. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Blanquet, A.; Staiger, M.P.; Dias, G.J.; Woodfield, T.B.F. On the Role of Surface Roughness in the Corrosion of Pure Magnesium in Vitro. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2012, 100, 1310–1318. [Google Scholar] [CrossRef] [PubMed]
- Qi, T.; Weng, J.; Yu, F.; Zhang, W.; Li, G.; Qin, H.; Tan, Z.; Zeng, H. Insights into the Role of Magnesium Ions in Affecting Osteogenic Differentiation of Mesenchymal Stem Cells. Biol. Trace Elem. Res. 2021, 199, 559–567. [Google Scholar] [CrossRef]
- Christian, J.W.; Mahajan, S. Deformation Twinning. Prog. Mater. Sci. 1995, 39, 1–157. [Google Scholar] [CrossRef]
- Barnett, M.R.; Keshavarz, Z.; Beer, A.G.; Atwell, D. Influence of Grain Size on the Compressive Deformation of Wrought Mg-3Al-1Zn. Acta Mater. 2004, 52, 5093–5103. [Google Scholar] [CrossRef]
- Bohlen, J.; Dobroň, P.; Swiostek, J.; Letzig, D.; Chmelík, F.; Lukáč, P.; Kainer, K.U. On the Influence of the Grain Size and Solute Content on the AE Response of Magnesium Alloys Tested in Tension and Compression. Mater. Sci. Eng. A 2007, 462, 302–306. [Google Scholar] [CrossRef] [Green Version]
- Koike, J.; Kobayashi, T.; Mukai, T.; Watanabe, H.; Suzuki, M.; Maruyama, K.; Higashi, K. The Activity of Non-Basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys. Acta Mater. 2003, 51, 2055–2065. [Google Scholar] [CrossRef]
- Shi, B.Q.; Chen, R.S.; Ke, W. Influence of Grain Size on the Tensile Ductility and Deformation Modes of Rolled Mg-1.02 Wt.% Zn Alloy. J. Magnes. Alloys 2013, 1, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Suh, B.-C.; Sasaki, T.; Nakata, T.; Kamado, S.; Hono, K. Effect of Ca on the Microstructure, Texture and Mechanical Properties in Mg-Zn-Mn Based Alloy. In Proceedings of the Magnesium Technology 2017; Solanki, K.N., Orlov, D., Singh, A., Neelameggham, N.R., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 525–531. [Google Scholar]
- Kannan, M.B.; Dietzel, W.; Singh, R.K.; Lyon, P. Hydrogen-Induced-Cracking in Magnesium Alloy under Cathodic Polarization. Scr. Mater. 2007, 57, 579–581. [Google Scholar] [CrossRef]
- Sanchez, A.H.M.; Luthringer, B.J.C.; Feyerabend, F.; Willumeit, R. Mg and Mg Alloys: How Comparable Are in Vitro and in Vivo Corrosion Rates? A Review. Acta Biomater. 2015, 13, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, S.; Xiong, X.; Ni, X. MgCl2 Promotes Mouse Mesenchymal Stem Cell Osteogenic Differentiation by Activating the P38/Osx/Runx2 Signaling Pathway. Mol. Med. Rep. 2020, 22, 3904–3910. [Google Scholar] [CrossRef] [PubMed]
- Burmester, A.; Willumeit-Römer, R.; Feyerabend, F. Behavior of Bone Cells in Contact with Magnesium Implant Material. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 165–179. [Google Scholar] [CrossRef]
Precipitate | Zn | Ca | Fe | Si | O | Mg | |
---|---|---|---|---|---|---|---|
ZX11-350 | M1 | 0.63 | 0.25 | - | - | - | Bal. |
1 | 0.68 | 0.48 | 1.8 | 0.34 | - | Bal. | |
2 | 0.67 | 0.63 | - | 0.97 | - | Bal. | |
3 | 0.58 | 0.20 | - | 0.04 | - | Bal. | |
4 | 0.67 | 0.46 | 0.03 | 0.07 | - | Bal. | |
ZX11-450 | M2 | 0.51 | 0.31 | - | - | - | Bal. |
1 | 0.50 | 0.43 | - | 0.07 | 0.60 | Bal. | |
2 | 0.54 | 10.50 | - | 1.63 | 1.19 | Bal. | |
3 | 0.82 | 4.02 | - | - | 0.46 | Bal. | |
4 | 0.72 | 1.68 | 0.02 | 0.05 | 0.60 | Bal. |
Alloy | HE | icorr (µA/cm2) | Pi (mm/y) | Electrolyte | Ref. |
---|---|---|---|---|---|
ZX11-350 | 0.48 ±0.06 mm/y | 27.32 ± 2.6 | 0.60 ±0.06 | DMEM+FBS | - |
ZX11-450 | 0.45 ± 0.08 mm/y | 23.9 ±4.2 | 0.53 ± 0.09 | DMEM+FBS | - |
Mg-1Zn-1Ca | 0.75 mL/cm2 | 27.37 | - | α-MEM | [32] |
Mg-3Zn-0.4Ca | 1.5 mL/cm2 | 30.25 | - | α -MEM | [32] |
Mg-2Zn-0.24Ca | ~5 mL | 21.8 | - | SBF | [33] |
Mg-1.4Zn-0.5Ca | - | 4.28 | - | SBF | [34] |
Mg-2Zn-06Ca | 2.17 mm/y | 1.89 | - | SBF | [19] |
Mg-2Zn-0.2Ca | - | 0.332 | - | SBF | [35] |
Mg–5Zn–1Ca | - | 12.16 | 0.28 | SBF | [36] |
Mg-5.6Zn-0.7Ca | 8 mm/y | 17.99 | 0.41 | 3.5 wt% NaCl | [31] |
Mg-3Zn-0.2Ca | 2 mL/cm2 | 4.56 | 0.1 | 0.9 wt% NaCl | [37] |
Mg-0.9Zn-0.26Ca | ~0.5 mL/cm2 | 3.11 | 0.07 | 1 mol/L NaCl | [38] |
Mg-0.5Zn-0.2Ca | - | 31.62 | - | 3.5 wt% NaCl | [39] |
Inhibition Ratio (%) | ||||||
---|---|---|---|---|---|---|
Day 1 | Day 3 | Day 7 | ||||
ZX11-350 | ZX11-450 | ZX11-350 | ZX11-450 | ZX11-350 | ZX11-450 | |
E. coli | 47.5 ± 13.3 | 56.6 ± 13.2 | 93.02 ± 2.3 | 77.6 ± 4.3 | 51.9 ± 28.4 | 100 |
S. aureus | 99.9 ± 0.003 | 99.9 ± 0.004 | 100 | 100 | 100 | 100 |
S. epidermidis | 99.9 ± 0.002 | 99.9 ± 0.01 | 99.1 ± 0.06 | 100 | 99.5 ± 0.06 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Millán-Ramos, B.; Morquecho-Marín, D.; Silva-Bermudez, P.; Ramírez-Ortega, D.; Depablos-Rivera, O.; García-López, J.; Fernández-Lizárraga, M.; Almaguer-Flores, A.; Victoria-Hernández, J.; Letzig, D.; et al. Degradation Behavior and Mechanical Integrity of a Mg-0.7Zn-0.6Ca (wt.%) Alloy: Effect of Grain Sizes and Crystallographic Texture. Materials 2022, 15, 3142. https://doi.org/10.3390/ma15093142
Millán-Ramos B, Morquecho-Marín D, Silva-Bermudez P, Ramírez-Ortega D, Depablos-Rivera O, García-López J, Fernández-Lizárraga M, Almaguer-Flores A, Victoria-Hernández J, Letzig D, et al. Degradation Behavior and Mechanical Integrity of a Mg-0.7Zn-0.6Ca (wt.%) Alloy: Effect of Grain Sizes and Crystallographic Texture. Materials. 2022; 15(9):3142. https://doi.org/10.3390/ma15093142
Chicago/Turabian StyleMillán-Ramos, Benjamin, Daniela Morquecho-Marín, Phaedra Silva-Bermudez, David Ramírez-Ortega, Osmary Depablos-Rivera, Julieta García-López, Mariana Fernández-Lizárraga, Argelia Almaguer-Flores, José Victoria-Hernández, Dietmar Letzig, and et al. 2022. "Degradation Behavior and Mechanical Integrity of a Mg-0.7Zn-0.6Ca (wt.%) Alloy: Effect of Grain Sizes and Crystallographic Texture" Materials 15, no. 9: 3142. https://doi.org/10.3390/ma15093142
APA StyleMillán-Ramos, B., Morquecho-Marín, D., Silva-Bermudez, P., Ramírez-Ortega, D., Depablos-Rivera, O., García-López, J., Fernández-Lizárraga, M., Almaguer-Flores, A., Victoria-Hernández, J., Letzig, D., & Rodil, S. E. (2022). Degradation Behavior and Mechanical Integrity of a Mg-0.7Zn-0.6Ca (wt.%) Alloy: Effect of Grain Sizes and Crystallographic Texture. Materials, 15(9), 3142. https://doi.org/10.3390/ma15093142