Optimal Design and Competitive Spans of Timber Floor Joists Based on Multi-Parametric MINLP Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Objectives and Framework of the Study
- Floor system A (SYS-A), which contains only timber beams and structural sheathing. However, two types of timber beams are used in SYS-A:
- ○
- Sawn wood (SYS-A-SW) and
- ○
- Glued laminated timber (SYS-A-Gl);
- Floor system B (SYS-B) made of glued laminated primary timber beams, sawn secondary timber beams and structural sheathing as the main components.
2.2. MINLP Optimization Model
- two different floor systems were considered:
- ○
- timber floor with primary beams (SYS-A),
- ○
- timber floor system with primary and secondary beams (SYS-B);
- two different sharing systems for mechanically jointed timber floors were used:
- ○
- system strength factor ksys,
- ○
- Gamma method;
- depths (heights) of the beams were bounded to be less than or equal to the extreme values which are still, but very rarely, used in the practice:
- ○
- 30 cm for sawn wood beams,
- ○
- 150 cm for glued laminated timber beams;
- Eurocode 5 was used to define the dimensioning constraints;
- prices in Central Europe were considered in the study.
2.2.1. MINLP Model Formulation
subjected to: gk (x,y) ≤ 0 k ∈ K
x ∈ X = {x ∈ Rn: xLO ≤ x ≤ xUP}
y ∈ Y = {0,1}m
2.2.2. Cost Objective Function
2.2.3. Structural Analysis and Dimensioning Constraints
2.2.4. Logical Constraints
2.3. Multi-Parametric MINLP Optimization
- Nineteen different structure spans: 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, 9 m, 10 m, 11 m, 12 m, 13 m, 14 m, 15 m, 16 m, 17 m, 18 m 19 m and 20 m;
- Five different imposed loads: 1 kN/m2, 2 kN/m2, 3 kN/m2, 4 kN/m2 and 5 kN/m2;
- For this purpose, 95 individual MINLP optimizations were executed. For each combination, two different load sharing systems were applied:
- The system strength factor ksys;
- The Gamma method.
- The optimization is proposed to start with continuous NLP optimization of the structure (the initialization), where all variables are treated as continuous. The result represents a good starting point and accumulates an effective global linear approximation of the superstructure for the next discrete optimization;
- The optimization continues with MINLP discrete optimization (a sequence of NLP and MILP solutions) in the second phase until the optimal solution is found.
3. Results and Discussion
3.1. Recommended Optimal Design for Timber Floor Joists
- If the strength system factor (ksys) is used, the critical condition is the bending strength of the timbe;
- While if the Gamma method is used, the critical condition is the final deflection of the timber floor.
3.2. Economically Suitable Spans of Timber Floor Joists
3.3. Calculation Example
3.3.1. The structure Self-Weight
3.3.2. The Structure Self-Weight Plus Additional Permanent Load
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Islam, H.; Jollands, M.; Setunge, S.; Haque, N.; Bhuiyan, M.A. Life cycle assessment and life cycle cost implications for roofing and floor designs in residential buildings. Energy Build. 2015, 104, 250–263. [Google Scholar] [CrossRef]
- Nadoushani, Z.S.M.; Akbarnezhad, A. Effects of structural system on the life cycle carbon footprint of buildings. Energy Build. 2015, 102, 337–346. [Google Scholar] [CrossRef]
- Li, J.; Rismanchi, B.; Ngo, T. Feasibility study to estimate the environmental benefits of utilising timber to construct high-rise buildings in Australia. Build. Environ. 2019, 147, 108–120. [Google Scholar] [CrossRef]
- Jiao, Y.; Lloyd, C.R.; Wakes, S.J. The relationship between total embodied energy and cost of commercial buildings. Energy Build. 2012, 52, 20–27. [Google Scholar] [CrossRef]
- Pomponi, F.; D’Amico, B. Holistic study of a timber double skin façade: Whole life carbon emissions and structural optimisation. Build. Environ. 2017, 124, 42–56. [Google Scholar] [CrossRef]
- Dauda, J.A.; Silva, L.C.; Lourenço, P.B.; Iuorio, O. Out-of-plane loaded masonry walls retrofitted with oriented strand boards: Numerical analysis and influencing parameters. Eng. Struct. 2021, 243, 112683. [Google Scholar] [CrossRef]
- Caniato, M.; Bettarello, F.; Fausti, P.; Ferluga, A.; Marsich, L.; Schmid, C. Impact sound of timber floors in sustainable buildings. Build. Environ. 2017, 120, 110–122. [Google Scholar] [CrossRef]
- Kolb, J. Systems in Timber Engineering; Springer Science & Business Media: Berlin, Germany, 2009. [Google Scholar]
- Jarnerö, K.; Brandt, A.; Olsson, A. Vibration properties of a timber floor assessed in laboratory and during construction. Eng. Struct. 2015, 82, 44–54. [Google Scholar] [CrossRef]
- Bernard, E.S. Dynamic Serviceability in Lightweight Engineered Timber Floors. J. Struct. Eng. 2008, 134, 258–268. [Google Scholar] [CrossRef]
- Ebadi, M.M.; Doudak, G.; Smith, I. Evaluation of floor vibration caused by human walking in a large glulam beam and deck floor. Eng. Struct. 2019, 196, 109349. [Google Scholar] [CrossRef]
- Weckendorf, J.; Toratti, T.; Smith, I.; Tannert, T. Vibration serviceability performance of timber floors. Eur. J. Wood Wood Prod. 2016, 74, 353–367. [Google Scholar] [CrossRef]
- O’Neill, J.; Abu, A.; Carradine, D.; Moss, P.; Buchanan, A. Modelling the Performance of Structural Timber Floors. In Proceedings of the 7th International Conference on Structures in Fire (SiF), Zurich, Switzerland, 6–8 June 2012; pp. 397–406. [Google Scholar] [CrossRef]
- Mavrokapnidis, D.; Mitropoulou, C.C.; Lagaros, N.D. Environmental assessment of cost optimized structural systems in tall buildings. J. Build. Eng. 2019, 24, 100730. [Google Scholar] [CrossRef] [Green Version]
- Kaveh, A.; Talaei, A.S.; Nasrollahi, A. Application of Probabilistic Particle Swarm in Optimal Design of Large-Span Prestressed Concrete Slabs. Iran. J. Sci. Technol. Trans. Civ. Eng. 2016, 40, 33–40. [Google Scholar] [CrossRef]
- Aldwaik, M.; Adeli, H. Cost optimization of reinforced concrete flat slabs of arbitrary configuration in irregular highrise building structures. Struct. Multidiscip. Optim. 2016, 54, 151–164. [Google Scholar] [CrossRef]
- Basha, F.; Latha, K.M. Design Optimization of Reinforced Concrete Slabs Using Genetic Algorithms. Int. J. Civ. Eng. Technol. (IJCIET) 2018, 9, 1370–1386. [Google Scholar]
- Stochino, F.; Gayarre, F.L. Reinforced Concrete Slab Optimization with Simulated Annealing. Appl. Sci. 2019, 9, 3161. [Google Scholar] [CrossRef] [Green Version]
- Suryavanshi, D.K.; Akhtar, S. Design Optimization of Reinforced Concrete Slabs Using Various Optimization Techniques. Int. J. Trend Sci. Res. Dev. 2019, 3, 45–58. [Google Scholar] [CrossRef]
- Fedghouche, F. Optimization of Reinforced Concrete Slabs According to Eurocode 2-Ec2. Alger. Equip. 2019, 60, 41–48. [Google Scholar]
- Shayegan, D.S.; Lork, A.; Hashemi, S.A.H. Optimum Cost Design of Reinforced Concrete Slabs Using Mouth Brooding Fish Algorithm. J. Appl. Eng. Sci. 2020, 10, 95–100. [Google Scholar] [CrossRef]
- Imran, S.M.; Kumar, R.R.; Kumar, A. Optimum Design of a Reinforced Concrete Ribbed Slab. J. Civ. Eng. Res. 2020, 10, 10–19. [Google Scholar] [CrossRef]
- Kaveh, A.; Abadi, A.S.M. Cost optimization of a composite floor system using an improved harmony search algorithm. J. Constr. Steel Res. 2010, 66, 664–669. [Google Scholar] [CrossRef]
- Omkar, S.N.; Senthilnath, J.; Khandelwal, R.; Naik, G.N.; Gopalakrishnan, S. Artificial Bee Colony (ABC) for multi-objective design optimization of composite structures. Appl. Soft Comput. 2011, 11, 489–499. [Google Scholar] [CrossRef]
- Poitras, G.; Lefrançois, G.; Cormier, G. Optimization of steel floor systems using particle swarm optimization. J. Constr. Steel Res. 2011, 67, 1225–1231. [Google Scholar] [CrossRef]
- Kaveh, A.; Behnam, A.F. Cost optimization of a composite floor system, one-way waffle slab, and concrete slab formwork using a charged system search algorithm. Sci. Iran. 2012, 19, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Kaveh, A.; Ahangaran, M. Discrete cost optimization of composite floor system using social harmony search model. Appl. Soft Comput. 2012, 12, 372–381. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, M.Y.; Zhou, M.; Deng, Z. Optimal topology design of steel–concrete composite structures under stiffness and strength constraints. Comput. Struct. 2012, 112–113, 433–444. [Google Scholar] [CrossRef]
- Žula, T.; Kravanja, S.; Klanšek, U. MINLP optimization of a composite I beam floor system. Steel Compos. Struct. 2016, 22, 1163–1192. [Google Scholar] [CrossRef]
- Kravanja, S.; Žula, T.; Klanšek, U. Multi-parametric MINLP optimization study of a composite I beam floor system. Eng. Struct. 2017, 130, 316–335. [Google Scholar] [CrossRef]
- Silva, R.A.; Rodrigues, T.A. Optimized dimensioning of steel-concrete composite beams. Rev. IBRACON Estrut. Mater. 2019, 12, 1428–1453. [Google Scholar] [CrossRef] [Green Version]
- Jelušič, P.; Kravanja, S. Optimal design of timber-concrete composite floors based on the multi-parametric MINLP optimization. Compos. Struct. 2017, 179, 285–293. [Google Scholar] [CrossRef]
- Kaveh, A.; Ghafari, M.H. Optimum design of steel floor system: Effect of floor division number, deck thickness and castellated beams. Struct. Eng. Mech. 2016, 59, 933–950. [Google Scholar] [CrossRef]
- Stanić, A.; Hudobivnik, B.; Brank, B. Economic-design optimization of cross laminated timber plates with ribs. Compos. Struct. 2016, 154, 527–537. [Google Scholar] [CrossRef]
- Brank, B.; Stanić, A.; Lavrenčič, M.; Hudobivnik, B. Design optimization and failure modelling of ribbed cross-laminated timber plates. In Shell Structures: Theory and Applications; CRC Press: London, UK, 2017; Volume 4, pp. 69–72. ISBN 9781138050457. [Google Scholar]
- Kegl, M.; Butinar, B.J.; Kegl, B. An efficient gradient-based optimization algorithm for mechanical systems. Commun. Numer. Methods Eng. 2002, 18, 363–371. [Google Scholar] [CrossRef]
- Mayencourt, P.; Rasid, I.M.; Mueller, C. Structural Optimization of Cross-Laminated Timber Panes. In Proceedings of the IASS Symposium 2018 Creativity in Structural Design, Boston, MA, USA, 16–20 July 2018; Mueller, C., Adriaenssens, S., Eds.; International Association for Shell and Spatial Structures (IASS): Madrid, Spain, 2018. [Google Scholar]
- Mayencourt, P.; Mueller, C. Structural Optimization of Cross-laminated Timber Panels in One-way Bending. Structures 2019, 18, 48–59. [Google Scholar] [CrossRef]
- Santos, P.; Correia, J.R.; Godinho, L.; Dias, A.M.P.G.; Dias, A. Life cycle analysis of cross-insulated timber panels. Structures 2021, 31, 1311–1324. [Google Scholar] [CrossRef]
- Nesheim, S.; Mela, K.; Malo, K.A.; Labonnote, N. Optimization framework for cost and carbon emission of timber floor elements. Eng. Struct. 2022, 252, 113485. [Google Scholar] [CrossRef]
- Kolbitsch, A. Altbaukonstruktionen. Charakteristika, Rechenwerte, Sanierungsansätze; Springer: Vienna, Austria; New York, NY, USA, 1989. [Google Scholar]
- Kolb, J. Holzbau mit System: Tragkonstruktion und Schichtaufbau der Bauteile; Deutsche Gesellschaft für Holzforschung (DGfH): München, Germany; Birkhäuser: Basel, Switzerland, 2007. [Google Scholar]
- Cobb, F. Structural Engineer’s Pocket Book: Eurocodes, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- PINE Manufacturers. New Zealand Glulam Span Tables; New Zealand Pine Manufacturers Association: Richmond, New Zealand, 2008. [Google Scholar]
- APA. Glued Laminated Beam Design Tables; Form No. S475J; APA—The Engineered Wood Association: Tacoma, WA, USA, 2016. [Google Scholar]
- Kravanja, Z.; Grossmann, I.E. New developments and capabilities in prosyn—An automated topology and parameter process synthesizer. Comput. Chem. Eng. 1994, 18, 1097–1114. [Google Scholar] [CrossRef]
- Kravanja, S.; Kravanja, Z.; Bedenik, B.S. The MINLP optimization approach to structural synthesis. Part I: A general view on simultaneous topology and parameter optimization. Int. J. Numer. Methods Eng. 1998, 43, 263–292. [Google Scholar] [CrossRef]
- EN 1995-1:2004; Eurocode 5: Design of Timber Structures—Part 1-1: General—Common Rules and Rules for Buildings—Eurocode 5. European Committee for Standardization: Brussels, Belgium, 2004.
- Brook, A.; Kendrick, D.; Meeraus, A. GAMS, a user’s guide. ACM SIGNUM Newsl. 1988, 23, 10–11. [Google Scholar] [CrossRef]
- Kravanja, S.; Soršak, A.; Kravanja, Z. Efficient Multilevel MINLP Strategies for Solving Large Combinatorial Problems in Engineering. Optim. Eng. 2003, 4, 97–151. [Google Scholar] [CrossRef]
- Kravanja, Z. Challenges in sustainable integrated process synthesis and the capabilities of an MINLP process synthesizer MipSyn. Comput. Chem. Eng. 2010, 34, 1831–1848. [Google Scholar] [CrossRef]
- Drud, A.S. CONOPT—A Large-Scale GRG Code. ORSA J. Comput. 1994, 6, 207–216. [Google Scholar] [CrossRef]
- Ilog IBM. CPLEX User’s Manual; Cplex Studio: York, PA, USA, 2017. [Google Scholar]
Input data: | |||
a | allowable deflection at concentrated static force 1 kN | gk | self-weigtht of the timber beams plus floor board |
bfloor | floor width | gk,pb | self-weight of the primary beams plus secondary beams plus floor board |
cboard | basic price per unit of timber board | h | height of the timber beam |
cL,board | price of floor board installation | hpb | height of the primary timber beam |
cM,t | price of sawn timber or glued laminated timber (C24) | kh | depth factor |
cM,imp | price of timber impregnation | kdist | proportion of the point load |
E | modulus of elasticity of timber | kdist,pb | proportion of the point load on the primary beam |
Eboard | modulus of elasticity of the timber boards | m | mass of the self-weight of the floor |
fboard,y,k, | characteristic bending strength of the timber board | mass | mass of the timber floor joist structure |
fboard,vk, | characteristic shear strength of the timber board | massv | mass of the timber floor structure for vibration frequency calculation |
fmk | characteristic bending strength of timber | ufin | final deflection of the floor structure |
fvk | characteristic shear strength of timber | ufin,pb | final deflection of the primary beam |
kamp | amplification factor | ufin,board | final deflection of the timber board |
kdef | deformation factor | uinst | instantaneous deflection of the floor |
kmod | modification factor to strength values | uinst,board | instantaneous deflection of the timber board |
ksys | loading sharing factor | uinst,pb | instantaneous deflection of the primary board |
qk | vertical imposed load | w | vertical deflection caused by a concentrated static force 1 kN |
L | span of floor beams | wpb | vertical deflection caused by a concentrated static force 1 kN of the primary beam |
γboard | specific weight of timber boards | COST | production costs of the structure |
γg | partial factors for permanent actions | (EI)b | equivalent plate bending stiffness parallel to the beams |
γk | specific weight of timber beam | (EI)eff | effective stiffness of timber floor system |
γM | partial factor for material properties | (EI)jois | equivalent bending stiffness of the joists |
γg | partial factors for imposed actions | (EI)l | equivalent bending stiffness of the joists divided by the joist spacing |
γ1 | composite action of the beam and timber board | Md | design bending moment |
γ2 | composite action of the beam | Vd | design shear force |
ξ | modal damping coefficient | n40 | number of first order modes |
ψ2 | factor for the quasi-permanent value of the variable action | ν | floor velocity |
νallow | permissible floor velocity | ||
Variables x ∈ X: | σm,y,d | design bending stress in timber beam | |
b | width of the timber beam | σm,y,d,pb | design bending stress in the primary beam |
bpb | width of the primary timber beam | τboard,max | design shear stress in timber boards |
bvr | velocity response constant | τmax | design shear stress in timber beam |
cboard | basic price per unit of timber board | τmax,pb | design shear stress in the primary beam |
d | thickness of the floor board | ||
e | spacing between floor beams | Discrete binary variablesy = {ymat, yst}, y ∈ Y: | |
epb | spacing between floor primary beams | ymat | the sub-vector of the binary variables for bending strengths |
fm,y,d | design bending strength of timber | yst | the sub-vector of the binary variables for standard dimensions |
fm,y,d,pb | design bending strength of the timber of the primary beams | ||
fvd | design shear strength of timber | Sets | |
fvd,pb | design shear strength of the timber of the primary beams | i, i ∈ I | alternatives of characteristic bending strengths of timber |
fboard,y,d, | design bending strength of the timber board | j, j ∈ J | alternatives of standard dimensions |
Floor System A (SYS A) | Additional Material Cost Items in Timber Floor System B (SYS B) | ||||
---|---|---|---|---|---|
Timber: | Timber for primary beams: | ||||
(2) | (6) | ||||
Timber impregnation: | Timber impregnation for primary beams: | ||||
(3) | (7) | ||||
Floor boarding: | |||||
(4) | |||||
Floor board placing: | |||||
(5) | |||||
cM,t | price of timber (€/m3) | Where: | |||
b | width of the timber beam (m) | ||||
cM,imp | price of timber impregnation (€/m3) | h | height of the timber beam (m) | ||
cM,board | price of the prefabricated floor boards (€/m2) | e | spacing between timber beams (m) | ||
cL,board | price of floor board placing (€/m3) | bpb | width of the timber primary beam (m) | ||
cM,t,pb | price of timber for primary beams (€/m3) | hpb | height of the timber primary beam (m) | ||
cM,imp,pb | price of timber impregnation primary beams (€/m3) | epb | spacing between timber primary beams (m) |
Ultimate limit state constraints (ULS): | |
(10) | |
when the loading sharing factor ksys is used to calculate the design bending strength: | |
(11),(12) | |
(13),(14) | |
when the Gamma method γ is used to calculate the effective stiffness of timber floor system: | |
(15) | |
(16) | |
(17) | |
(18),(19) | |
(20) | |
(21),(22) | |
(23) | |
(24) | |
when the loading sharing factor ksys is used: | |
(25) | |
(26) | |
when the Gamma method γ is used: | |
(27) | |
(28) | |
(29),(30) | |
(31),(32) | |
: | (33) |
(34) | |
(35) | |
Serviceability limit state constraints (SLS): | |
(36) | |
when the loading sharing factor ksys is used | |
(37) | |
when the Gamma method γ is used | |
(38) | |
(39) | |
(40) | |
(41) | |
when the loading sharing factor ksys is used | |
(42) | |
when the Gamma method γ is used | |
(43) | |
(44) | |
(45) | |
(46) | |
(47),(48) | |
(49) | |
(50),(51) | |
(52) | |
(53) | |
(54) | |
(55),(56) | |
(57) | |
(58) | |
(59) | |
(60) | |
(61),(62) |
Ultimate limit state constraints (ULS): | |
(63) | |
(64) | |
(65) | |
(66),(67) | |
(68) | |
(69) | |
(70) | |
Serviceability limit state constraints (SLS): | |
(71) | |
(72) | |
(73) | |
(74) | |
(75) | |
(76) | |
(77) | |
(78),(79) |
Variable | Discrete Alternatives |
---|---|
d (mm) | 20, 25, 30 |
b (mm) | 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300 |
h (mm) | 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300 |
e (m) | 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 |
fmk (MPa) | 24 |
bpb (mm) | 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 180 |
hpb (mm) | 300, 320, 340, 360, 380, 400, 420, 440, 460, 480, 500, 520, 540, 560, 580 600, 620, 640, 660, 680, 700, 720, 740, 760, 780, 800, 820, 840, 860, 880, 900, 920, 940, 960, 980, 1000, 1020, 1040, 1060, 1080, 1100, 1120, 1140, 1160, 1180, 1200, 1220, 1260, 1280, 1300, 1320, 1340, 1360, 1380, 1400, 1420, 1440, 1460, 1480, 1500 |
epb (m) | 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0 |
epb (m) | 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0 |
Sawn timber or glued laminated timber (C24) | 250 €/m3 or 500 €/m3 | |
Timber impregnation | 125 €/m3 | |
Timber boards | 21 €/m2 | |
Price of floor board installation | 13 €/m2 | |
Loading sharing factor | 1.1 | |
Modification factor for duration of load and moisture content | 0.8 | |
Deformation factor | 0.8 | |
Partial factor for sawn timber or glued laminated timber | 1.3 or 1.25 | |
Specific weight of timber board | 5 kN/m3 | |
Factor for the quasi-permanent value of the variable action | 0.3 | |
Partial factor for permanent action | 1.35 | |
Partial factor for variable action | 1.50 | |
Partial factor for installed strutting | 1.0 | |
Amplification factor to account for shear deflection | 1.05 | |
Modal damping coefficient | 0.02 | |
Floor width | 10 m | |
fboard,y,k | Characteristic bending strength of timber board | 24 MPa |
Composite action of the beam and timber board | 0.2 | |
Composite action of the beam | 1.0 |
Loading Sharing Factor ksys= 1.1 | Gamma Method γ1 = 0.2 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Imposed Load qk = 1 kN/m2 | ||||||||||||||||
Span L: | 2 m | 3 m | 4 m | 5 m | 6 m | 7 m | 8 m | 9 m | 2 m | 3 m | 4 m | 5 m | 6 m | 7 m | 8 m | 9 m |
d (mm) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 25 |
b (mm) | 50 | 50 | 50 | 50 | 100 | 180 | 300 | 300 | 50 | 50 | 50 | 50 | 70 | 160 | 300 | 260 |
h (mm) | 120 | 160 | 220 | 300 | 300 | 300 | 300 | 300 | 80 | 140 | 180 | 260 | 300 | 300 | 300 | 300 |
e (m) | 1.1 | 1.0 | 1.1 | 1.1 | 1.1 | 1 | 0.9 | 0.5 | 1.1 | 1.1 | 1.1 | 1.1 | 1 | 1.1 | 1.1 | 0.6 |
fmk (MPa) | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
mass (kg/m2) | 11.91 | 12.80 | 13.50 | 14.77 | 19.55 | 28.90 | 45.00 | 73.00 | 11.27 | 12.23 | 12.86 | 14.14 | 17.35 | 25.27 | 38.64 | 58.00 |
COST (€/m2) | 36.05 | 37.00 | 37.75 | 39.11 | 44.23 | 54.25 | 71.50 | 101.50 | 35.36 | 36.39 | 37.07 | 38.43 | 41.88 | 50.36 | 64.68 | 90.75 |
Imposed load qk = 2 kN/m2 | ||||||||||||||||
Span L: | 2 m | 3 m | 4 m | 5 m | 6 m | 7 m | 8 m | 9 m | 2 m | 3 m | 4 m | 5 m | 6 m | 7 m | 8 m | 9 m |
d (mm) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 25 |
b (mm) | 50 | 50 | 50 | 50 | 90 | 160 | 300 | 300 | 50 | 50 | 50 | 50 | 60 | 140 | 260 | 260 |
h (mm) | 120 | 180 | 240 | 300 | 300 | 300 | 300 | 300 | 100 | 140 | 200 | 260 | 300 | 300 | 300 | 300 |
e (m) | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.8 | 0.9 | 0.5 | 0.9 | 0.9 | 0.9 | 0.9 | 0.8 | 0.9 | 0.9 | 0.6 |
fmk (MPa) | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
mass (kg/m2) | 12.33 | 13.50 | 14.67 | 15.83 | 25.00 | 31.00 | 45.00 | 73.00 | 11.94 | 12.72 | 13.89 | 15.06 | 17.88 | 26.33 | 40.33 | 58.00 |
COST (€/m2) | 36.50 | 37.75 | 39.00 | 40.25 | 45.25 | 56.50 | 71.5 | 101.5 | 36.08 | 36.92 | 38.17 | 39.42 | 42.44 | 51.50 | 66.50 | 90.75 |
Imposed load qk = 3 kN/m2 | ||||||||||||||||
Span L: | 2 m | 3 m | 4 m | 5 m | 6 m | 7 m | 8 m | 9 m | 2 m | 3 m | 4 m | 5 m | 6 m | 7 m | 8 m | 9 m |
d (mm) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 25 |
b (mm) | 50 | 50 | 50 | 70 | 100 | 160 | 280 | 300 | 50 | 50 | 50 | 50 | 50 | 120 | 240 | 260 |
h (mm) | 120 | 200 | 260 | 280 | 300 | 300 | 300 | 300 | 100 | 160 | 220 | 280 | 300 | 300 | 300 | 300 |
e (m) | 0.7 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.5 | 0.8 | 0.8 | 0.8 | 0.8 | 0.6 | 0.7 | 0.8 | 0.6 |
fmk (MPa) | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
mass (kg/m2) | 13.00 | 14.38 | 15.69 | 18.58 | 23.13 | 31.00 | 46.75 | 73 | 12.19 | 13.50 | 14.81 | 16.13 | 18.75 | 28.00 | 41.50 | 58.00 |
COST (€/m2) | 37.21 | 38.69 | 40.09 | 43.19 | 48.06 | 56.50 | 73.38 | 101.5 | 36.34 | 37.75 | 39.16 | 40.56 | 43.38 | 53.29 | 67.75 | 90.75 |
Imposed load qk = 4 kN/m2 | ||||||||||||||||
Span L: | 2 m | 3 m | 4 m | 5 m | 6 m | 7 m | 8 m | 9 m | 2 m | 3 m | 4 m | 5 m | 6 m | 7 m | 8 m | 9 m |
d (mm) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | Dimension outside the defined limits | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
b (mm) | 50 | 50 | 50 | 70 | 100 | 160 | 300 | 50 | 50 | 50 | 50 | 60 | 160 | 180 | 280 | |
h (mm) | 140 | 200 | 260 | 280 | 300 | 300 | 300 | 100 | 160 | 240 | 300 | 300 | 300 | 300 | 300 | |
e (m) | 0.7 | 0.7 | 0.6 | 0.6 | 0.6 | 0.6 | 0.7 | 0.6 | 0.7 | 0.7 | 0.7 | 0.5 | 0.7 | 0.5 | 0.5 | |
fmk (MPa) | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | |
mass (kg/m2) | 13.50 | 15.00 | 17.58 | 21.43 | 27.50 | 38.00 | 55.00 | 12.92 | 14.00 | 16.00 | 17.50 | 22.60 | 34.00 | 47.80 | 68.80 | |
COST (€/m2) | 37.75 | 39.36 | 42.13 | 46.25 | 52.75 | 64.00 | 82.21 | 37.13 | 38.29 | 40.43 | 42.04 | 47.50 | 59.71 | 74.50 | 97.00 | |
Imposed load qk = 5 kN/m2 | ||||||||||||||||
Span L: | 2 m | 3 m | 4 m | 5 m | 6 m | 7 m | 8 m | 9 m | 2 m | 3 m | 4 m | 5 m | 6 m | 7 m | 8 m | 9 m |
d (mm) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | Dimension outside the defined limits | 20 | 20 | 20 | 20 | 20 | 20 | 20 | Dimension outside the defined limits |
b (mm) | 50 | 50 | 60 | 90 | 120 | 200 | 260 | 50 | 50 | 50 | 50 | 80 | 140 | 280 | ||
h (mm) | 160 | 240 | 240 | 300 | 300 | 300 | 300 | 120 | 180 | 260 | 280 | 300 | 300 | 300 | ||
e (m) | 0.7 | 0.7 | 0.5 | 0.7 | 0.6 | 0.6 | 0.5 | 0.7 | 0.7 | 0.7 | 0.5 | 0.5 | 0.5 | 0.6 | ||
fmk (MPa) | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | ||
mass (kg/m2) | 14.00 | 16.00 | 20.08 | 23.50 | 31.00 | 45.00 | 64.60 | 13.00 | 14.50 | 16.50 | 19.80 | 26.80 | 39.40 | 59.00 | ||
COST (€/m2) | 38.29 | 40.43 | 44.80 | 48.46 | 56.50 | 71.50 | 92.50 | 37.21 | 38.82 | 40.96 | 44.50 | 52.00 | 65.50 | 86.50 |
System SYS-A-Gl (Including γ1 = 0.2) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Imposed Load qk = 1 kN/m2 | ||||||||||||||||
Span L: | 5 m | 6 m | 7 m | 8 m | 9 m | 10 m | 11 m | 12 m | 13 m | 14 m | 15 m | 16 m | 17 m | 18 m | 19 m | 20 m |
d (mm) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 25 | 20 | 25 | 25 |
b (mm) | 60 | 60 | 60 | 60 | 60 | 60 | 80 | 80 | 80 | 100 | 100 | 100 | 100 | 120 | 120 | 120 |
h (mm) | 280 | 360 | 440 | 540 | 620 | 720 | 740 | 840 | 940 | 960 | 1060 | 1140 | 1200 | 1260 | 1340 | 1440 |
e (m) | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.2 | 1.2 |
fmk (MPa) | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
mass (kg/m2) | 15.3 | 16.9 | 18.4 | 20.3 | 21.8 | 23.7 | 28.8 | 31.4 | 33.9 | 40.5 | 43.7 | 46.3 | 50.7 | 58.1 | 59.4 | 62.9 |
COST (€/m2) | 43.5 | 46.3 | 49.0 | 52.4 | 55.1 | 58.5 | 67.6 | 72.2 | 76.7 | 88.5 | 94.2 | 98.8 | 110.2 | 119.9 | 125.8 | 132.0 |
Imposed load qk = 2 kN/m2 | ||||||||||||||||
Span L: | 5 m | 6 m | 7 m | 8 m | 9 m | 10 m | 11 m | 12 m | 13 m | 14 m | 15 m | 16 m | 17 m | 18 m | 19 m | 20 m |
d (mm) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 25 | 25 | 25 | 25 | 30 | 30 | 30 | 30 |
b (mm) | 60 | 60 | 60 | 60 | 60 | 60 | 80 | 80 | 80 | 100 | 100 | 100 | 100 | 120 | 120 | 120 |
h (mm) | 280 | 360 | 440 | 520 | 600 | 700 | 720 | 800 | 900 | 920 | 1000 | 1100 | 1180 | 1180 | 1300 | 1420 |
e (m) | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 1.1 | 1.1 | 1 | 1 | 1.1 | 1 | 1 | 0.9 |
fmk (MPa) | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
mass (kg/m2) | 16.5 | 18.4 | 20.3 | 22.1 | 24.0 | 26.3 | 32.4 | 34.9 | 35.4 | 41.8 | 47.5 | 51.0 | 52.5 | 64.6 | 69.0 | 81.3 |
COST (€/m2) | 45.7 | 49.0 | 52.3 | 55.7 | 59.0 | 63.2 | 74.0 | 78.4 | 82.9 | 94.3 | 104.5 | 110.8 | 117.0 | 138.5 | 147.5 | 168.3 |
Imposed load qk = 3 kN/m2 | ||||||||||||||||
Span L: | 5 m | 6 m | 7 m | 8 m | 9 m | 10 m | 11 m | 12 m | 13 m | 14 m | 15 m | 16 m | 17 m | 18 m | 19 m | 20 m |
d (mm) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 25 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
b (mm) | 60 | 60 | 60 | 60 | 60 | 60 | 80 | 80 | 80 | 80 | 80 | 100 | 100 | 100 | 120 | 120 |
h (mm) | 320 | 380 | 460 | 520 | 600 | 680 | 700 | 780 | 880 | 920 | 960 | 1000 | 1060 | 1160 | 1260 | 1380 |
e (m) | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.9 | 1 | 0.9 | 0.7 | 0.8 | 0.7 | 0.7 | 0.6 | 0.6 |
fmk (MPa) | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
mass (kg/m2) | 18.4 | 20.0 | 22.1 | 23.7 | 25.8 | 27.9 | 34.5 | 36.8 | 39.6 | 43.6 | 53.4 | 58.8 | 68.0 | 73.0 | 103.2 | 111.6 |
COST (€/m2) | 49.0 | 51.8 | 55.6 | 58.4 | 62.1 | 65.9 | 77.8 | 85.3 | 94.0 | 101.1 | 118.6 | 128.1 | 144.6 | 153.6 | 207.5 | 222.5 |
Imposed load qk = 4 kN/m2 | ||||||||||||||||
Span L: | 5 m | 6 m | 7 m | 8 m | 9 m | 10 m | 11 m | 12 m | 13 m | 14 m | 15 m | 16 m | 17 m | 18 m | 19 m | 20 m |
d (mm) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 25 | 25 | 30 | 30 | 30 | Dimension outside the defined limits | Dimension outside the defined limits | Dimension outside the defined limits | Dimension outside the defined limits |
b (mm) | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 80 | 80 | 80 | 80 | 100 | ||||
h (mm) | 340 | 420 | 500 | 580 | 660 | 680 | 680 | 720 | 780 | 920 | 920 | 940 | ||||
e (m) | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.6 | 0.5 | 0.6 | 0.6 | 0.7 | 0.6 | 0.6 | ||||
fmk (MPa) | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | ||||
mass (kg/m2) | 20.2 | 22.6 | 25.0 | 27.4 | 29.8 | 33.8 | 38.6 | 46.1 | 48.9 | 51.8 | 57.9 | 69.8 | ||||
COST (€/m2) | 52.2 | 56.5 | 60.8 | 65.1 | 69.4 | 76.5 | 85.0 | 102.0 | 107.0 | 115.7 | 126.7 | 147.9 | ||||
Imposed load qk = 5 kN/m2 | ||||||||||||||||
Span L: | 5 m | 6 m | 7 m | 8 m | 9 m | 10 m | 11 m | 12 m | 13 m | 14 m | 15 m | 16 m | 17 m | 18 m | 19 m | 20 m |
d (mm) | 20 | 20 | 20 | 20 | 20 | 20 | 25 | 30 | 30 | Dimension outside the defined limits | Dimension outside the defined limits | Dimension outside the defined limits | Dimension outside the defined limits | Dimension outside the defined limits | Dimension outside the defined limits | Dimension outside the defined limits |
b (mm) | 60 | 60 | 60 | 60 | 60 | 60 | 80 | 80 | 80 | |||||||
h (mm) | 380 | 460 | 560 | 600 | 620 | 680 | 720 | 800 | 880 | |||||||
e (m) | 0.7 | 0.7 | 0.7 | 0.6 | 0.5 | 0.5 | 0.6 | 0.6 | 0.6 | |||||||
fmk (MPa) | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | |||||||
mass (kg/m2) | 21.4 | 23.8 | 26.8 | 31.0 | 36.0 | 38.6 | 46.1 | 52.3 | 56.1 | |||||||
COST (€/m2) | 54.4 | 58.6 | 64.0 | 71.5 | 80.5 | 85.0 | 102.0 | 116.7 | 123.3 |
System SYS-B (Including γ1 = 0.2) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Imposed Load qk= 1 kN/m2 | ||||||||||||||||
Span L: | 5 m | 6 m | 7 m | 8 m | 9 m | 10 m | 11 m | 12 m | 13 m | 14 m | 15 m | 16 m | 17 m | 18 m | 19 m | 20 m |
d (mm) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
b (mm) | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
h (mm) | 120 | 120 | 140 | 160 | 140 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 180 | 120 |
e (m) | 1.1 | 1.1 | 1.1 | 1.1 | 1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 |
fmk (MPa) | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
hpb (mm) | 340 | 420 | 540 | 660 | 720 | 780 | 880 | 920 | 1040 | 1140 | 1180 | 1280 | 1400 | 1440 | 1480 | 1500 |
bpb (mm) | 60 | 60 | 60 | 60 | 60 | 80 | 80 | 100 | 100 | 100 | 120 | 120 | 120 | 140 | 160 | 160 |
epb (m) | 2.8 | 2.8 | 3.2 | 3.6 | 3.3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 2.5 |
mass (kg/m2) | 14.5 | 15.1 | 15.8 | 16.4 | 17.0 | 18.3 | 19.0 | 20.9 | 22.0 | 22.8 | 25.3 | 26.3 | 27.6 | 30.5 | 33.6 | 45.5 |
COST (€/m2) | 40.6 | 41.7 | 42.7 | 43.6 | 44.8 | 46.8 | 48.1 | 51.4 | 53.3 | 54.9 | 59.2 | 61.1 | 63.3 | 68.6 | 74.1 | 96.0 |
Imposed load qk = 2 kN/m2 | ||||||||||||||||
Span L: | 5 m | 6 m | 7 m | 8 m | 9 m | 10 m | 11 m | 12 m | 13 m | 14 m | 15 m | 16 m | 17 m | 18 m | 19 m | 20 m |
d (mm) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
b (mm) | 50 | 50 | 50 | 50 | 550 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
h (mm) | 120 | 120 | 120 | 100 | 180 | 140 | 200 | 180 | 160 | 200 | 200 | 180 | 200 | 180 | 140 | 120 |
e (m) | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.8 | 0.9 |
fmk (MPa) | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
hpb (mm) | 480 | 580 | 700 | 720 | 960 | 960 | 1080 | 1160 | 1200 | 1300 | 1400 | 1440 | 1480 | 1500 | 1500 | 1500 |
bpb (mm) | 60 | 60 | 60 | 60 | 80 | 80 | 100 | 100 | 100 | 120 | 120 | 120 | 140 | 140 | 140 | 160 |
epb (m) | 2.7 | 2.7 | 2.7 | 2.1 | 3.8 | 3.1 | 4 | 3.8 | 3.4 | 4 | 4 | 3.7 | 4 | 3.6 | 3.2 | 2.5 |
mass (kg/m2) | 16.1 | 16.8 | 17.8 | 19.1 | 20.6 | 21.4 | 23.3 | 24.2 | 25.5 | 27.5 | 28.6 | 29.8 | 32.0 | 33.9 | 36.0 | 45.9 |
COST (€/m2) | 43.2 | 44.6 | 46.2 | 48.9 | 50.4 | 52.4 | 55.0 | 56.8 | 59.4 | 62.5 | 64.4 | 66.9 | 70.5 | 74.2 | 78.297 | 96.5 |
Imposed load qk = 3 kN/m2 | ||||||||||||||||
Span L: | 5 m | 6 m | 7 m | 8 m | 9 m | 10 m | 11 m | 12 m | 13 m | 14 m | 15 m | 16 m | 17 m | 18 m | 19 m | 20 m |
d (mm) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
b (mm) | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 120 | 50 | 50 |
h (mm) | 140 | 140 | 200 | 160 | 140 | 220 | 160 | 140 | 200 | 180 | 200 | 160 | 140 | 120 | 120 | 120 |
e (m) | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
fmk (MPa) | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
hpb (mm) | 600 | 720 | 900 | 920 | 960 | 1200 | 1180 | 1200 | 1420 | 1440 | 1500 | 1480 | 1450 | 1480 | 1500 | 1500 |
bpb (mm) | 60 | 60 | 80 | 80 | 80 | 100 | 100 | 100 | 120 | 120 | 140 | 140 | 140 | 140 | 140 | 160 |
epb (m) | 2.8 | 2.7 | 3.8 | 3.1 | 2.6 | 4 | 3.1 | 2.6 | 3.8 | 3.3 | 3.6 | 3.1 | 2.7 | 2.4 | 2.2 | 2.2 |
mass (kg/m2) | 17.6 | 18.7 | 21.0 | 21.8 | 23.4 | 25.3 | 26.8 | 29.2 | 30.1 | 32.3 | 34.8 | 36.9 | 39.9 | 42.8 | 46.0 | 50.8 |
COST (€/m2) | 45.3 | 47.3 | 50.5 | 52.6 | 55.7 | 57.9 | 61.5 | 66.1 | 66.7 | 70.9 | 75.1 | 79.5 | 85.2 | 90.8 | 96.5 | 105.0 |
Imposed load qk = 4 kN/m2 | ||||||||||||||||
Span L: | 5 m | 6 m | 7 m | 8 m | 9 m | 10 m | 11 m | 12 m | 13 m | 14 m | 15 m | 16 m | 17 m | 18 m | 19 m | 20 m |
d (mm) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
b (mm) | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
h (mm) | 140 | 100 | 160 | 140 | 200 | 160 | 220 | 180 | 200 | 180 | 140 | 120 | 120 | 100 | 100 | 80 |
e (m) | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.6 | 0.7 | 0.7 | 0.7 | 0.6 |
fmk (MPa) | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
hpb (mm) | 680 | 700 | 900 | 960 | 1180 | 1200 | 1400 | 1420 | 1480 | 1480 | 1460 | 1500 | 1500 | 1480 | 1500 | 1500 |
bpb (mm) | 60 | 60 | 80 | 80 | 100 | 100 | 120 | 120 | 140 | 140 | 140 | 140 | 140 | 140 | 160 | 160 |
epb (m) | 2.6 | 1.9 | 3.0 | 2.5 | 3.6 | 2.9 | 3.9 | 3.3 | 3.6 | 3.1 | 2.6 | 2.4 | 2.1 | 1.8 | 1.9 | 1.7 |
mass (kg/m2) | 19.0 | 20.2 | 22.4 | 24.3 | 26.5 | 28.5 | 30.6 | 32.6 | 35.1 | 37.9 | 41.0 | 44.1 | 48.0 | 52.8 | 56.7 | 61.7 |
COST (€/m2) | 47.6 | 50.5 | 53.3 | 57.0 | 59.8 | 64.1 | 66.8 | 71.1 | 75.3 | 80.6 | 86.9 | 92.5 | 99.7 | 108.6 | 115.6 | 124.7 |
Imposed load qk = 5 kN/m2 | ||||||||||||||||
Span L: | 5 m | 6 m | 7 m | 8 m | 9 m | 10 m | 11 m | 12 m | 13 m | 14 m | 15 m | 16 m | 17 m | 18 m | 19 m | 20 m |
d (mm) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
b (mm) | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
h (mm) | 120 | 180 | 160 | 220 | 180 | 240 | 200 | 180 | 180 | 160 | 120 | 120 | 100 | 80 | 80 | 80 |
e (m) | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.6 | 0.6 | 0.7 | 0.6 | 0.7 | 0.7 |
fmk (MPa) | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 |
hpb (mm) | 680 | 880 | 960 | 1160 | 1200 | 1420 | 1440 | 1440 | 1500 | 1480 | 1500 | 1500 | 1500 | 1500 | 1480 | 1460 |
bpb (mm) | 60 | 80 | 80 | 100 | 100 | 120 | 120 | 120 | 140 | 140 | 140 | 160 | 140 | 140 | 140 | 160 |
epb (m) | 2.1 | 3.1 | 2.7 | 3.6 | 3.0 | 3.9 | 3.3 | 2.8 | 3.0 | 2.5 | 2.2 | 2.2 | 1.7 | 1.5 | 1.3 | 1.3 |
mass (kg/m2) | 19.8 | 22.4 | 24.0 | 26.8 | 28.5 | 31.3 | 33.3 | 36.1 | 39.0 | 43.0 | 46.9 | 51.7 | 55.7 | 61.3 | 67.8 | 74.9 |
COST (€/m2) | 49.4 | 53.0 | 56.1 | 60.0 | 63.8 | 67.7 | 72.1 | 77.4 | 82.6 | 90.1 | 97.4 | 105.9 | 113.9 | 124.0 | 135.8 | 148.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jelušič, P.; Kravanja, S. Optimal Design and Competitive Spans of Timber Floor Joists Based on Multi-Parametric MINLP Optimization. Materials 2022, 15, 3217. https://doi.org/10.3390/ma15093217
Jelušič P, Kravanja S. Optimal Design and Competitive Spans of Timber Floor Joists Based on Multi-Parametric MINLP Optimization. Materials. 2022; 15(9):3217. https://doi.org/10.3390/ma15093217
Chicago/Turabian StyleJelušič, Primož, and Stojan Kravanja. 2022. "Optimal Design and Competitive Spans of Timber Floor Joists Based on Multi-Parametric MINLP Optimization" Materials 15, no. 9: 3217. https://doi.org/10.3390/ma15093217
APA StyleJelušič, P., & Kravanja, S. (2022). Optimal Design and Competitive Spans of Timber Floor Joists Based on Multi-Parametric MINLP Optimization. Materials, 15(9), 3217. https://doi.org/10.3390/ma15093217