Relating Dry Friction to Interdigitation of Surface Passivation Species: A Molecular Dynamics Study on Amorphous Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Model Systems
2.2. Force Field
2.2.1. Bulk Amorphous Carbon
2.2.2. Surface Atoms
2.3. Sliding Simulations
3. Results
4. Discussion
5. Conclusions
- We find that a classification of the shear stress according to the properties of the unloaded systems (i.e., a-C density, length, density and polarity of the surface passivation species) only provides a few qualitative conclusions about the relationship between friction and surface passivation. Namely, chain-like passivation of the a-C surfaces leads to shear stresses that are consistently higher than those exhibited by H and H/OH-terminated systems but that do not depend on the density of the a-C substrate. Moreover, surface passivation species with OH head groups lead in general to higher friction than their non-polar counterparts. Finally, sliding systems with a high density of chains with equal length are those performing best among all considered chain-passivated systems in terms of shear stress.
- More precise insights into the friction–passivation relationship can be obtained through a careful analysis of the dynamic behavior of the sliding interfaces. A classification of the shear stress values according to the overlap between averaged density profiles of the passivation species delivers an overall qualitative trend whereby the shear stress increases with increasing overlap. However, the relation between this simple overlap parameter and the shear stress is almost linear only for monoatomically H-passivated a-C. This is because the overlap between averaged density profiles fails to properly describe the interlocking between surface chain-like passivation species along the sliding direction.
- Finally, we devise an improved descriptor of the interdigitation of the passivation species during sliding that can be well correlated with the shear stress. The descriptor is based on a simple geometric evaluation of the maximum overlap between atoms of the two contacting surfaces. In contrast with averaged density profiles, the overlap is measured so that it properly captures the interlocking of the two surfaces that causes resistance to the sliding motion. This descriptor of the steric hindrance explains most of the shear stress behavior also for systems with polar end groups (monohydric alcohol chains), but additional effects come into play owing to the electrostatic interactions between polar groups.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Atom Type | Element and Hybridization | Neighbors |
---|---|---|
CD | sp3 C | 4 C |
CG | sp2 C | 3 C |
C1 | sp3 C | 3 C, 1 H |
C3 | sp3 C | 2 C, 2 H |
C5 | sp3 C | 1 C, 3 H |
C6 | sp3 C | 1 C, 2 H, 1 O1 |
CZ | sp2 C | 2 C, 1 H |
CY | sp2 C | 2 C, 1 O2 |
H1 | H | 1 sp3 C |
H2 | H | 1 sp2 C |
H4 | H | 1 O1 |
H5 | H | 1 O2 |
O1 | O | 1 sp3 C, 1 H |
O2 | O | 1 sp2 C, 1 H |
Bond | ||
---|---|---|
CD–CD | 15.110 | 1.545 |
CD–CG/CZ/CY | 17.724 | 1.473 |
CD–C1/C3/C5/C6 | 15.110 | 1.536 |
CG–C1/C3/C5/C6 | 17.724 | 1.463 |
CG/CZ/CY–CG/CZ/CY | 20.337 | 1.400 |
C1/C3/C5/C6–C1/C3/C5/C6 | 13.443 | 1.526 |
CZ–C1/C3/C5/C6 | 13.746 | 1.510 |
CY–C1/C3/C5/C6 | 14.527 | 1.522 |
C1/C3/C5/C6–H1 | 14.353 | 1.090 |
CZ–H2 | 14.744 | 1.080 |
C6–O1 | 13.876 | 1.410 |
CY–O2 | 19.514 | 1.364 |
H4–O1 | 23.980 | 0.960 |
H5–O2 | 23.980 | 0.960 |
Angle | ||
---|---|---|
C–CD–C | 4.194 | 109.5 |
C–CG–C | 3.686 | 120.0 |
CY–C1/C3/C5/C6–Csp3 | 2.732 | 111.1 |
CG/CZ–C1/C3/C5/C6–Csp3 | 2.732 | 114.0 |
Csp3–C1/C3/C5/C6–Csp3 | 1.735 | 109.5 |
Csp2–C1/C3/C5/C6–Csp2 | 1.735 | 109.5 |
H1/C–C1/C3/C5/C6–H1 | 1.518 | 109.5 |
H1–C6–O1 | 1.518 | 109.5 |
C–C6–O1 | 2.168 | 109.5 |
Csp2–CZ–Csp2 | 3.686 | 120.0 |
C–CZ–Csp3 | 3.035 | 120.0 |
C–CZ–H2 | 1.518 | 120.0 |
Csp3–CY–O2 | 3.773 | 120.4 |
Csp2–CY–O2 | 3.035 | 120.0 |
C–CY–C | 3.686 | 120.0 |
C6–O1–H4 | 2.385 | 108.5 |
CY–O2–H5 | 1.518 | 113.0 |
Dihedral | |||
---|---|---|---|
H1–Csp3–Csp3–H1 | 0 | 0 | 13.790 |
H1–C6–O1–H4 | 0 | 0 | 19.514 |
C–C6–O1–H4 | −15.437 | −7.545 | 21.335 |
C–CY–O2–H5 | 0 | 0 | 72.937 |
H1–Csp3–C6–O1 | 0 | 0 | 20.294 |
C–CD/CG/C1/C3–C6–O1 | 0 | 0 | 20.294 |
H1–C1/C3/C5/C6–CD/C1/C3–Csp3/CG | 0 | 0 | 15.871 |
C1/C3/C5/C6–C3–CD/C1/C3–Csp3 | 75.452 | −6.808 | 12.098 |
Atom Type | q[e−] | ||
---|---|---|---|
CD | 0 | 0 | 0 |
CG | 0 | 3.55 | 3.296 |
C1 | −0.060 | 3.50 | 2.862 |
C3 | −0.120 | 3.50 | 2.862 |
C5 | −0.180 | 3.50 | 2.862 |
C6 | 0.145 | 3.50 | 2.862 |
CZ | −0.115 | 3.55 | 3.035 |
CY | 0.150 | 3.55 | 3.035 |
H1 | 0.060 | 2.50 | 1.301 |
H2 | 0.115 | 2.42 | 1.301 |
H4 | 0.418 | 0 | 0 |
H5 | 0.435 | 0 | 0 |
O1 | −0.683 | 3.12 | 7.372 |
O2 | −0.585 | 3.07 | 7.372 |
References
- Spikes, H. Friction Modifier Additives. Tribol. Lett. 2015, 60, 5. [Google Scholar] [CrossRef] [Green Version]
- Konicek, A.R.; Grierson, D.S.; Sumant, A.V.; Friedmann, T.A.; Sullivan, J.P.; Gilbert, P.U.P.A.; Sawyer, W.G.; Carpick, R.W. Influence of Surface Passivation on the Friction and Wear Behavior of Ultrananocrystalline Diamond and Tetrahedral Amorphous Carbon Thin Films. Phys. Rev. B 2012, 85, 155448. [Google Scholar] [CrossRef] [Green Version]
- De Barros Bouchet, M.-I.; Zilibotti, G.; Matta, C.; Righi, M.C.; Vandenbulcke, L.; Vacher, B.; Martin, J.-M. Friction of Diamond in the Presence of Water Vapor and Hydrogen Gas. Coupling Gas-Phase Lubrication and First-Principles Studies. J. Phys. Chem. C 2012, 116, 6966–6972. [Google Scholar] [CrossRef]
- Matta, C.; Joly-Pottuz, L.; De Barros Bouchet, M.I.; Martin, J.M.; Kano, M.; Zhang, Q.; Goddard, W.A. Superlubricity and Tribochemistry of Polyhydric Alcohols. Phys. Rev. B 2008, 78, 085436. [Google Scholar] [CrossRef] [Green Version]
- Kano, M.; Martin, J.M.; Yoshida, K.; De Barros Bouchet, M.I. Super-Low Friction of ta-C Coating in Presence of Oleic Acid. Friction 2014, 2, 156–163. [Google Scholar] [CrossRef] [Green Version]
- De Barros Bouchet, M.I.; Martin, J.M.; Avila, J.; Kano, M.; Yoshida, K.; Tsuruda, T.; Bai, S.; Higuchi, Y.; Ozawa, N.; Kubo, M.; et al. Diamond-like Carbon Coating under Oleic Acid Lubrication: Evidence for Graphene Oxide Formation in Superlow Friction. Sci. Rep. 2017, 7, 46394. [Google Scholar] [CrossRef]
- Kuwahara, T.; Romero, P.A.; Makowski, S.; Weihnacht, V.; Moras, G.; Moseler, M. Mechano-Chemical Decomposition of Organic Friction Modifiers with Multiple Reactive Centres Induces Superlubricity of Ta-C. Nat. Commun. 2019, 10, 151. [Google Scholar] [CrossRef] [Green Version]
- Pastewka, L.; Moser, S.; Gumbsch, P.; Moseler, M. Anisotropic Mechanical Amorphization Drives Wear in Diamond. Nat. Mater. 2011, 10, 34–38. [Google Scholar] [CrossRef]
- Kunze, T.; Posselt, M.; Gemming, S.; Seifert, G.; Konicek, A.R.; Carpick, R.W.; Pastewka, L.; Moseler, M. Wear, Plasticity, and Rehybridization in Tetrahedral Amorphous Carbon. Tribol. Lett. 2014, 53, 119–126. [Google Scholar] [CrossRef]
- De Barros Bouchet, M.I.; Matta, C.; Vacher, B.; Le-Mogne, T.; Martin, J.M.; von Lautz, J.; Ma, T.; Pastewka, L.; Otschik, J.; Gumbsch, P.; et al. Energy Filtering Transmission Electron Microscopy and Atomistic Simulations of Tribo-Induced Hybridization Change of Nanocrystalline Diamond Coating. Carbon 2015, 87, 317–329. [Google Scholar] [CrossRef]
- Kuwahara, T.; Moras, G.; Moseler, M. Friction Regimes of Water-Lubricated Diamond (111): Role of Interfacial Ether Groups and Tribo-Induced Aromatic Surface Reconstructions. Phys. Rev. Lett. 2017, 119, 096101. [Google Scholar] [CrossRef] [PubMed]
- Moras, G.; Klemenz, A.; Reichenbach, T.; Gola, A.; Uetsuka, H.; Moseler, M.; Pastewka, L. Shear Melting of Silicon and Diamond and the Disappearance of the Polyamorphic Transition under Shear. Phys. Rev. Mater. 2018, 2, 083601. [Google Scholar] [CrossRef]
- Konicek, A.R.; Grierson, D.S.; Gilbert, P.U.P.A.; Sawyer, W.G.; Sumant, A.V.; Carpick, R.W. Origin of Ultralow Friction and Wear in Ultrananocrystalline Diamond. Phys. Rev. Lett. 2008, 100, 235502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zilibotti, G.; Corni, S.; Righi, M.C. Load-Induced Confinement Activates Diamond Lubrication by Water. Phys. Rev. Lett. 2013, 111, 146101. [Google Scholar] [CrossRef]
- Kuwahara, T.; Moras, G.; Moseler, M. Role of Oxygen Functional Groups in the Friction of Water-Lubricated Low-Index Diamond Surfaces. Phys. Rev. Mater. 2018, 2, 073606. [Google Scholar] [CrossRef]
- Kuwahara, T.; Long, Y.; De Barros Bouchet, M.-I.; Martin, J.M.; Moras, G.; Moseler, M. Superlow Friction of a-C:H Coatings in Vacuum: Passivation Regimes and Structural Characterization of the Sliding Interfaces. Coatings 2021, 11, 1069. [Google Scholar] [CrossRef]
- Krylov, S.Y.; Frenken, J.W.M. The Physics of Atomic-scale Friction: Basic Considerations and Open Questions. Phys. Status Solidi 2014, 251, 711–736. [Google Scholar] [CrossRef]
- Reichenbach, T.; Mayrhofer, L.; Kuwahara, T.; Moseler, M.; Moras, G. Steric Effects Control Dry Friction of H- and F-Terminated Carbon Surfaces. ACS Appl. Mater. Interfaces 2020, 12, 8805–8816. [Google Scholar] [CrossRef]
- Baykara, M.Z.; Vazirisereshk, M.R.; Martini, A. Emerging Superlubricity: A Review of the State of the Art and Perspectives on Future Research. Appl. Phys. Rev. 2018, 5, 041102. [Google Scholar] [CrossRef] [Green Version]
- Ewen, J.P.; Gattinoni, C.; Morgan, N.; Spikes, H.A.; Dini, D. Nonequilibrium Molecular Dynamics Simulations of Organic Friction Modifiers Adsorbed on Iron Oxide Surfaces. Langmuir 2016, 32, 4450–4463. [Google Scholar] [CrossRef] [Green Version]
- Loehle, S.; Matta, C.; Minfray, C.; Le Mogne, T.; Martin, J.-M.; Iovine, R.; Obara, Y.; Miura, R.; Miyamoto, A. Mixed Lubrication with C18 Fatty Acids: Effect of Unsaturation. Tribol. Lett. 2014, 53, 319–328. [Google Scholar] [CrossRef]
- Doig, M.; Warrens, C.P.; Camp, P.J. Structure and Friction of Stearic Acid and Oleic Acid Films Adsorbed on Iron Oxide Surfaces in Squalane. Langmuir 2014, 30, 186–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalin, M.; Simič, R.; Hirayama, T.; Geue, T.; Korelis, P. Neutron-Reflectometry Study of Alcohol Adsorption on Various DLC Coatings. Appl. Surf. Sci. 2014, 288, 405–410. [Google Scholar] [CrossRef]
- Kalin, M.; Simič, R. Atomic Force Microscopy and Tribology Study of the Adsorption of Alcohols on Diamond-like Carbon Coatings and Steel. Appl. Surf. Sci. 2013, 271, 317–328. [Google Scholar] [CrossRef]
- Chandross, M.; Webb, E.B.; Stevens, M.J.; Grest, G.S.; Garofalini, S.H. Systematic Study of the Effect of Disorder on Nanotribology of Self-Assembled Monolayers. Phys. Rev. Lett. 2004, 93, 166103. [Google Scholar] [CrossRef]
- Ramin, L.; Jabbarzadeh, A. Frictional Properties of Two Alkanethiol Self Assembled Monolayers in Sliding Contact: Odd-Even Effects. J. Chem. Phys. 2012, 137, 174706. [Google Scholar] [CrossRef]
- Latorre, C.A.; Ewen, J.P.; Gattinoni, C.; Dini, D. Simulating Surfactant–Iron Oxide Interfaces: From Density Functional Theory to Molecular Dynamics. J. Phys. Chem. B 2019, 123, 6870–6881. [Google Scholar] [CrossRef]
- Harrison, J.A.; White, C.T.; Colton, R.J.; Brenner, D.W. Effects of Chemically Bound, Flexible Hydrocarbon Species on the Frictional Properties of Diamond Surfaces. J. Phys. Chem. 1993, 97, 6573–6576. [Google Scholar] [CrossRef]
- Mikulski, P.T.; Herman, L.A.; Harrison, J.A. Odd and Even Model Self-Assembled Monolayers: Links between Friction and Structure. Langmuir 2005, 21, 12197–12206. [Google Scholar] [CrossRef]
- Pastewka, L.; Pou, P.; Pérez, R.; Gumbsch, P.; Moseler, M. Describing Bond-Breaking Processes by Reactive Potentials: Importance of an Environment-Dependent Interaction Range. Phys. Rev. B 2008, 78, 161402. [Google Scholar] [CrossRef] [Green Version]
- Held, A.; Moseler, M. Ab Initio Thermodynamics Study of Ambient Gases Reacting with Amorphous Carbon. Phys. Rev. B 2019, 99, 054207. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Mayrhofer, L.; Moras, G.; Mulakaluri, N.; Rajagopalan, S.; Stevens, P.A.; Moseler, M. Fluorine-Terminated Diamond Surfaces as Dense Dipole Lattices: The Electrostatic Origin of Polar Hydrophobicity. J. Am. Chem. Soc. 2016, 138, 4018–4028. [Google Scholar] [CrossRef] [PubMed]
- Pastewka, L.; Klemenz, A.; Gumbsch, P.; Moseler, M. Screened Empirical Bond-Order Potentials for Si-C. Phys. Rev. B 2013, 87, 205410. [Google Scholar] [CrossRef] [Green Version]
- Weiner, S.J.; Kollman, P.A.; Case, D.A.; Singh, U.C.; Ghio, C.; Alagona, G.; Profeta, S.; Weiner, P. A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins. J. Am. Chem. Soc. 1984, 106, 765–784. [Google Scholar] [CrossRef]
- Jana, R.; Savio, D.; Deringer, V.L.; Pastewka, L. Structural and Elastic Properties of Amorphous Carbon from Simulated Quenching at Low Rates. Model. Simul. Mater. Sci. Eng. 2019, 27, 085009. [Google Scholar] [CrossRef] [Green Version]
- Pastewka, L.; Moser, S.; Moseler, M. Atomistic Insights into the Running-in, Lubrication, and Failure of Hydrogenated Diamond-like Carbon Coatings. Tribol. Lett. 2010, 39, 49–61. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in ’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Klein, J.; Kumacheva, E.; Mahalu, D.; Perahia, D.; Fetters, L.J. Reduction of Frictional Forces between Solid Surfaces Bearing Polymer Brushes. Nature 1994, 370, 634–636. [Google Scholar] [CrossRef]
- Eder, S.J.; Vernes, A.; Betz, G. On the Derjaguin Offset in Boundary-Lubricated Nanotribological Systems. Langmuir 2013, 29, 13760–13772. [Google Scholar] [CrossRef]
- von Goeldel, S.; Reichenbach, T.; König, F.; Mayrhofer, L.; Moras, G.; Jacobs, G.; Moseler, M. A Combined Experimental and Atomistic Investigation of PTFE Double Transfer Film Formation and Lubrication in Rolling Point Contacts. Tribol. Lett. 2021, 69, 136. [Google Scholar] [CrossRef]
- Wolloch, M.; Levita, G.; Restuccia, P.; Righi, M.C. Interfacial Charge Density and Its Connection to Adhesion and Frictional Forces. Phys. Rev. Lett. 2018, 121, 026804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loehle, S. Understanding of Adsorption Mechanisms and Tribological Behaviors of C18 Fatty Acids on Iron-Based Surfaces: A Molecular Simulation Approach. Ph.D. Thesis, Ecole Centrale de Lyon, Écully, France, 2014. [Google Scholar]
- Campen, S.; Green, J.; Lamb, G.; Atkinson, D.; Spikes, H. On the Increase in Boundary Friction with Sliding Speed. Tribol. Lett. 2012, 48, 237–248. [Google Scholar] [CrossRef]
- Salinas Ruiz, V.R.; Kuwahara, T.; Galipaud, J.; Masenelli-Varlot, K.; Ben Hassine, M.; Héau, C.; Stoll, M.; Mayrhofer, L.; Moras, G.; Martin, J.M.; et al. Interplay of Mechanics and Chemistry Governs Wear of Diamond-like Carbon Coatings Interacting with ZDDP-Additivated Lubricants. Nat. Commun. 2021, 12, 4550. [Google Scholar] [CrossRef] [PubMed]
- Scherge, M.; Shakhvorostov, D.; Pöhlmann, K. Fundamental Wear Mechanism of Metals. Wear 2003, 255, 395–400. [Google Scholar] [CrossRef]
- Krause, D. JUWELS: Modular Tier-0/1 Supercomputer at Jülich Supercomputing Centre. J. Large-Scale Res. Facil. JLSRF 2019, 5, A135. [Google Scholar] [CrossRef] [Green Version]
2.0 | 2.22 (2.21) | 243 (233) | 337 (338) | 0.27 (0.26) |
2.6 | 2.67 (2.62) | 380 (299) | 589 (498) | 0.24 (0.22) |
3.2 | 3.27 (3.13) | 467 (426) | 993 (760) | 0.15 (0.20) |
aC Density [g/cm3] | #Rests On Lower Surface | #Rests On Upper Surface | #Rests (Low + Up) Per Surface Area [nm−2] |
---|---|---|---|
3.2 | 24 | 27 | 11.86 |
11 | 13 | 5.58 | |
6 | 4 | 2.32 | |
2.6 | 29 | 22 | 11.86 |
13 | 10 | 5.35 | |
6 | 5 | 2.56 | |
2.0 | 24 | 21 | 10.46 2 |
20 | 19 | 9.07 | |
9 | 19 | 6.51 2 | |
20 | 8 | 6.51 2 | |
20 | 5 | 5.81 2 | |
9 | 8 | 3.95 | |
5 | 5 | 2.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falk, K.; Reichenbach, T.; Gkagkas, K.; Moseler, M.; Moras, G. Relating Dry Friction to Interdigitation of Surface Passivation Species: A Molecular Dynamics Study on Amorphous Carbon. Materials 2022, 15, 3247. https://doi.org/10.3390/ma15093247
Falk K, Reichenbach T, Gkagkas K, Moseler M, Moras G. Relating Dry Friction to Interdigitation of Surface Passivation Species: A Molecular Dynamics Study on Amorphous Carbon. Materials. 2022; 15(9):3247. https://doi.org/10.3390/ma15093247
Chicago/Turabian StyleFalk, Kerstin, Thomas Reichenbach, Konstantinos Gkagkas, Michael Moseler, and Gianpietro Moras. 2022. "Relating Dry Friction to Interdigitation of Surface Passivation Species: A Molecular Dynamics Study on Amorphous Carbon" Materials 15, no. 9: 3247. https://doi.org/10.3390/ma15093247
APA StyleFalk, K., Reichenbach, T., Gkagkas, K., Moseler, M., & Moras, G. (2022). Relating Dry Friction to Interdigitation of Surface Passivation Species: A Molecular Dynamics Study on Amorphous Carbon. Materials, 15(9), 3247. https://doi.org/10.3390/ma15093247