A Wideband High-Isolation Microstrip MIMO Circularly-Polarized Antenna Based on Parasitic Elements
Abstract
:1. Introduction
2. Single Antenna Configuration and Analysis
3. Proposed MIMO-CP Antenna Configuration and Analysis
4. Proposed Antenna Parametric Study
5. Experimental Results and Discussion
6. Diversity Performance of Suggested Antenna
6.1. Envelope Correlation Coefficient
6.2. Diversity Gain
6.3. Channel Capacity Loss
6.4. Total Active Reflection Coefficient
7. Comparison Performance with Previous Work
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jensen, M.; Wallace, J.W. A review of antennas and propagation for MIMO wireless communication. IEEE Trans. Antennas Propag. 2004, 52, 2810–2824. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.; Lee, J.H. Capacity of multiple-antenna fading channels: Spatial fading correlation, double scattering, and keyhole. IEEE Trans. Inf. Theory 2003, 49, 2636–2647. [Google Scholar] [CrossRef] [Green Version]
- Awan, W.A.; Soruri, M.; Alibakhshikenari, M.; Limiti, E. On-demand frequency switchable antenna array operating at 24.8 and 28 GHz for 5G high-gain sensors applications. Prog. Electromagn. Res. M 2022, 108, 163–173. [Google Scholar] [CrossRef]
- Godara, L.C. Smart Antennas; CRC Press LLC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Baughan, R.G.; Andersen, J.B. Antenna diversity in mobile communications. IEEE Trans. Veh. Technol. 1987, 36, 149–172. [Google Scholar]
- Zaidi, A.; Awan, W.A.; Ghaffar, A.; Alzaidi, M.S.; Alsharef, M.; Elkamchouchi, D.H.; Ghoneim, S.S.M.; Alharbi, T.E.A. A low profile ultra-wideband antenna with reconfigurable notch band characteristics for smart electronic systems. Micromachines 2022, 13, 1803. [Google Scholar] [CrossRef]
- Nedil, M. Coupling Reduction between Dipole Antennas. IEEE Antennas Propag. Mag. 2016, 16, 3–4. [Google Scholar]
- Qian, K.; Zhao, L. An integrated antenna interference cancellation chip with frequency rejection characteristic for MIMO systems. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1285–1288. [Google Scholar] [CrossRef]
- Bayarzaya, B.; Hussain, N.; Awan, W.A.; Sufian, M.A.; Abbas, A.; Choi, D.; Kim, N. A compact MIMO antenna with improved isolation for ISM, sub-6 GHz, and WLAN application. Micromachines 2022, 13, 1355. [Google Scholar] [CrossRef]
- Iqbal, A.; Saraereh, O.A.; Ahmad, A.W.; Bashir, S. Mutual coupling reduction using F-shaped stubs. IEEE Access 2017, 6, 2755–2759. [Google Scholar] [CrossRef]
- Li, M.; Jiang, L.; Yeung, K.L. A general and systematic method to design neutralization lines for isolation enhancement in MIMO antenna arrays. IEEE Trans. Veh. Technol. 2020, 69, 6242–6253. [Google Scholar] [CrossRef]
- Sahandabadi, S.; Makki, S.V.A.D. Mutual coupling reduction using complementary of SRR with wire MNG structure. Microw. Opt. Technol. Lett. 2019, 61, 1231–1234. [Google Scholar] [CrossRef]
- Zeng, J.; Luk, K. A simple wideband magneto electric dipole antenna with a defected ground structure. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1497–1500. [Google Scholar] [CrossRef]
- Hussain, N.; Awan, W.A.; Ali, W.; Naqvi, S.I.; Zaidi, A.; Le, T.T. Compact wideband patch antenna and its MIMO configuration for 28 GHz applications. AEU Int. J. Electron. Commun. 2021, 132, 153612. [Google Scholar] [CrossRef]
- Ullah, U.; Al-Hasan, M.; Koziel, S.; Mabrouk, I.B. Circular polarization diversity Implementation for correlation reduction in wideband low-cost multiple-input-multiple-output antenna. IEEE Access 2020, 8, 95585–95593. [Google Scholar] [CrossRef]
- Khan, I.; Wu, Q.; Ullah, I.; Rahman, S.U.; Ullah, H.; Zhang, K. Designed circularly polarized two-port microstrip MIMO antenna for WLAN applications. Appl. Sci. 2022, 12, 1068. [Google Scholar] [CrossRef]
- Zhang, E.; Michel, A.; Pino, M.R.; Nepa, P.; Qiu, J. A dual circularly polarized patch antenna with high isolation for MIMO WLAN applications. IEEE Access 2020, 8, 117833–117840. [Google Scholar] [CrossRef]
- Harbel, M.; Zbitou, J.; Hefnawi, M.; Latrach, M. Mutual coupling reduction in Mm Wave patch antenna arrays using mushroom-like EBG structure. In Proceedings of the IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), Kenitra, Morocco, 2–3 December 2020; pp. 1–3. [Google Scholar]
- Biswas, A.K.; Chakraborty, U. Reduced mutual coupling of compact MIMO antenna designed for WLAN and WiMAX applications. Int. J. RF Microw. Comput. Aided Eng. 2018, 29, e21629. [Google Scholar] [CrossRef]
- Hussain, N.; Naqvi, S.I.; Awan, W.A.; Le, T.T. A metasurface-based wideband bidirectional same-sense circularly polarized antenna. Int. J. RF Microw. Comput. Aided Eng. 2022, 30, e22262. [Google Scholar] [CrossRef]
- Tang, J.; Faraz, F.; Chen, X.; Zhang, Q.; Li, Q.; Li, Y.; Zhang, S. A metasurface superstrate for mutual coupling reduction of large antenna arrays. IEEE Access 2020, 8, 126859–126867. [Google Scholar] [CrossRef]
- Mark, R.; Rajak, N.; Mandal, K.; Das, S. Metamaterial based superstrate towards the isolation and gain enhancement of MIMO antenna for WLAN application. AEU Int. J. Electron. Commun. 2019, 100, 144–152. [Google Scholar] [CrossRef]
- Mark, R.; Rajak, N.; Mandal, K.; Das, S. Isolation and gain enhancement using metamaterial-based superstrate for MIMO applications. Radio Eng. 2019, 28, 689–695. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, H.S. Design and analysis of high isolated super compact 2 × 2 MIMO antenna for WLAN application. Int. J. RF Microw. Comput. Aided Eng 2021, 31, e22864. [Google Scholar] [CrossRef]
- Zhu, J.; Li, S.; Liao, S.; Xue, Q. Wideband low-profile highly isolated MIMO antenna with artificial magnetic conductor. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 458–462. [Google Scholar] [CrossRef]
- Kaabal, A.; El Halaoui, M.E.; Ahyoud, S.; Asselman, A. A Low Mutual Coupling Design for Array Microstrip Antennas Integrated with Electromagnetic Band-Gap Structures. Procedia Technol. 2016, 22, 549–555. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Jin, J. Compact quad-port MIMO antenna with ultra-wideband and high isolation. Electronics 2022, 11, 3408. [Google Scholar] [CrossRef]
- Kulkarni, J.; Desai, A.; Sim, C.Y.D. Two port CPW-fed MIMO antenna with wide bandwidth and high isolation for future wireless applications. Int. J. RF Microw. Comput. Aided Eng. 2021, 31, e22700. [Google Scholar] [CrossRef]
- Zhang, S.; Pedersen, G.F. Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 166–169. [Google Scholar] [CrossRef]
- Sharma, K.; Pandey, G.P. Two port compact MIMO antenna for ISM band applications. Prog. Electromagn. Res. C 2020, 100, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Akbari, M.; Gupta, S.; Farahani, M.; Sebak, A.R.; Denidni, T.A. Gain enhancement of circularly-polarized dielectric resonator antenna based on 479 FSS superstrate for MMW applications. IEEE Trans. Antennas Propag. 2016, 64, 5542–5546. [Google Scholar] [CrossRef]
- Al-Gburi, A.J.A.; Zakaria, Z.; Alsariera, H.; Akbar, M.F.; Ibrahim, I.M.; Ahmad, K.S.; Ahmad, S.; Al-Bawri, S.S. Broadband Circular Polarised Printed Antennas for Indoor Wireless Communication Systems: A Comprehensive Review. Micromachines 2022, 13, 1048. [Google Scholar] [CrossRef]
- Awan, W.A.; Choi, D.M.; Hussain, N.; Elfergani, I.; Park, S.G.; Kim, N. A frequency selective surface loaded uwb antenna for high gain applications. Comput. Mater. Contin. 2022, 73, 6169–6180. [Google Scholar]
- Kartha, M.M. Performance analysis of circularly polarized dual annular ring patch antenna for MIMO satellite application. J. Electromagn. Waves Appl. 2021, 35, 1099–1112. [Google Scholar] [CrossRef]
- Thummaluru, S.R.; Chaudhary, R.K. Mu-negative metamaterial filter-based isolation technique for MIMO antennas. Electron. Lett. 2017, 53, 644–646. [Google Scholar] [CrossRef]
- Jaiswal, R.K.; Kumari, K.; Sim, C.Y.D.; Srivastava, K.V. Three-port circularly polarized MIMO antenna for WLAN application with pattern and polarization diversity. Microw. Opt. Technol. Lett. 2021, 63, 1927–1934. [Google Scholar] [CrossRef]
- Jamal, M.Y.; Li, M.; Yeung, K.L. Isolation enhancement of closely packed dual circularly polarized MIMO antenna using hybrid technique. IEEE Access 2020, 8, 11241–11247. [Google Scholar] [CrossRef]
- Malviya, L.; Panigrahi, R.K.; Kartikeyan, M. circularly polarized 2× 2 MIMO antenna for WLAN applications. Prog. Electromagn. Res. C 2016, 66, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Das, G.; Sharma, A.; Gangwar, R.K. Dielectric resonator based circularly polarized MIMO antenna with polarization diversity. Microw. Opt. Technol. Lett. 2018, 60, 685–693. [Google Scholar] [CrossRef]
- Sahu, N.K.; Das, G.; Gangwar, R.K. L-shaped dielectric resonator based circularly polarized multi-input-multi-output (MIMO) antenna for wireless local area network (WLAN) applications. Int. J. RF Microw. Comput. Aided Eng. 2018, 28, e21426. [Google Scholar] [CrossRef]
- Varshney, G.; Singh, R.; Pandey, V.S.; Yaduvanshi, R.S. Circularly polarized two-port MIMO dielectric resonator antenna. Prog. Electromagn. Res. M 2020, 91, 19–28. [Google Scholar] [CrossRef]
- Kumar, R.; Chaudhary, R.K. Investigation of higher order modes excitation through F-shaped slot in rectangular dielectric resonator antenna for wideband circular polarization with broadside radiation characteristics. Int. J. RF Microw. Comput. Aided Eng. 2018, 28, e21281. [Google Scholar] [CrossRef]
- Adam, I.; Yasin, M.N.M.; Ramli, N.; Jusoh, M.; Rahim, H.A.; Latef, T.B.A.; Sabapathy, T. Mutual coupling reduction of a wideband circularly polarized microstrip MIMO antenna. IEEE Access 2019, 7, 97838–97845. [Google Scholar] [CrossRef]
- Sufian, M.A.; Hussain, N.; Abbas, A.; Lee, J.; Park, S.G.; Kim, N. Mutual coupling reduction of a circularly polarized MIMO antenna using parasitic elements and DGS for V2X communications. IEEE Access 2022, 10, 56388–56400. [Google Scholar] [CrossRef]
- Khan, A.; Geng, S.; Zhao, X.; Shah, Z.; Jan, M.U.; Abdelbaky, M.A. Design of MIMO antenna with an enhanced isolation technique. Electronics 2020, 9, 1217. [Google Scholar] [CrossRef]
- Ullah, H.; Rahman, S.U.; Cao, Q.; Khan, I.; Ullah, H. Design of SWB MIMO antenna with extremely wideband isolation. Electronics 2020, 9, 194. [Google Scholar] [CrossRef] [Green Version]
- Jabire, A.H.; Zheng, H.X.; Abdu, A.; Song, Z. Characteristic mode analysis and design of wide band MIMO antenna consisting of metamaterial unit cell. Electronics 2019, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Khalid, H.; Awan, W.A.; Hussain, M.; Fatima, A.; Ali, M.; Hussain, N.; Khan, S.; Alibakhshikenari, M.; Limiti, E. Design of an integrated sub-6 GHz and mm wave MIMO antenna for 5G handheld devices. Appl. Sci. 2021, 11, 8331. [Google Scholar] [CrossRef]
- Chae, S.H.; Oh, S.; Park, S.O. Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna. IEEE Antennas Wirel. Propag. Lett. 2007, 6, 122–125. [Google Scholar] [CrossRef]
- Jabire, A.H.; Ghaffar, A.; Li, X.J.; Abdu, A.; Saminu, S.; Alibakhshikenari, M.; Limiti, E. Metamaterial based de sign of compact UWB/MIMO monopoles antenna with characteristic mode analysis. Appl. Sci. 2021, 11, 1542. [Google Scholar] [CrossRef]
Parameters | Size (mm) | Parameters | Size (mm) | Parameters | Size (mm) |
---|---|---|---|---|---|
WF | 70 | LF | 40 | s | 13.5 |
l h | 5.1 1.6 | Wi wg | 7.6 6.4 | i g | 2.7 1 |
References | Size (mm) | Isolation (dB) | Bandwidth (GHz) | Gain (dBi) | MC Techniques |
---|---|---|---|---|---|
[12] | 139.3 × 44 | 40 | 5.50−5.68 | Not given | Complementary of the split ring resonator |
[21] | 110 × 110 | 35 | 5.65−6.10 | 6.2 | Metasurface |
[22] | 32 × 60 | 24 | 5.68−6.05 | 7.98 | Metamaterial |
[23] | 70 × 60 | 41 | 5.70−6.20 | 9.4 | DNG Metameterial Superstrate |
[24] | 100 × 50 | 25 | 5.10−6.0 | Not given | DGS |
[26] | 68 × 40 | 45 | 5.71−6.10 | Not given | EBG |
[27] | 57 × 32 | 25 | 5.50−5.80 | 6.4 | Parallel couples Resonator |
[28] | 47 × 32 | 45 | 3.0−7.70 | 3 | Comb Shaped |
[29] | 35 × 33 | 30 | 3.10−5.0 | 3.2 | Neutralization Line |
[30] | 95.9 × 38.2 | 24 | 2.43−2.50 | 4.68 | Fractal EBG |
Proposed work | 70 × 40 | 64 | 4.89−6.85 | 6.45 | Square Parasitic Elements |
References | Size (mm) | Bandwidth (GHz) | ARBW CP | Isolation (dB) | Gain (dB) | Isolation Techniques |
---|---|---|---|---|---|---|
[17] | 96 × 96 | 2.36–2.53 | 2.30–2.50 | 25 | 8.0 | slot |
[34] | 60 × 33 | 3.9–4.2 | 3.97–4.30 | 37.5 | 3.4 | Annular ring patch with stubs |
[36] | 65 × 45 | 5.1–5.35 | 4.90–5.40 | 25 | 4 | T-shaped slot and Endfire antenna |
[37] | 100 × 150 | 2.47–2.55 | 2.55–2.60 | 20 | 6.1 | Hybrid Techniques |
[38] | 27.69 × 97 | 5.49–6.02 | 5.77–5.86 | 33 | 5.34 | Slot Techniques |
[39] | 40 × 50 | 5.50–5.80 | 5.55–5.60 | 25 | 4.70 | DGS |
[40] | 40 × 65 | 5.20–6.08 | 5.20–5.58 | 20 | 4.01 | Dielectric Resonator |
[41] | 80 × 80 | 5.71–8.20 | 5.77–8.08 | 15 | 3.8 | Dielectric Resonator |
[43] | 66 × 66 | 1.8–2.6 | 5.2–5.58 | 25 | 4.0 | Parasitic Line Patch |
Proposed Work | 70 × 40 | 4.89–6.85 | 5.41–6.57 | 64 | 6.45 | Square Parasitic Elements |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, I.; Zhang, K.; Wu, Q.; Ullah, I.; Ali, L.; Ullah, H.; Rahman, S.U. A Wideband High-Isolation Microstrip MIMO Circularly-Polarized Antenna Based on Parasitic Elements. Materials 2023, 16, 103. https://doi.org/10.3390/ma16010103
Khan I, Zhang K, Wu Q, Ullah I, Ali L, Ullah H, Rahman SU. A Wideband High-Isolation Microstrip MIMO Circularly-Polarized Antenna Based on Parasitic Elements. Materials. 2023; 16(1):103. https://doi.org/10.3390/ma16010103
Chicago/Turabian StyleKhan, Ijaz, Kuang Zhang, Qun Wu, Inam Ullah, Luqman Ali, Habib Ullah, and Saeed Ur Rahman. 2023. "A Wideband High-Isolation Microstrip MIMO Circularly-Polarized Antenna Based on Parasitic Elements" Materials 16, no. 1: 103. https://doi.org/10.3390/ma16010103
APA StyleKhan, I., Zhang, K., Wu, Q., Ullah, I., Ali, L., Ullah, H., & Rahman, S. U. (2023). A Wideband High-Isolation Microstrip MIMO Circularly-Polarized Antenna Based on Parasitic Elements. Materials, 16(1), 103. https://doi.org/10.3390/ma16010103